Abstract

We propose an approach for an efficient generation of optical Cherenkov radiation (OCR) in the near-infrared by tailoring the waveguide dispersion for a zero group-velocity mismatching between the radiation and the pump soliton. Based on an As2S3 slot waveguide with subwavelength dimensions, dispersion profiles with four zero dispersion wavelengths are found to produce a phase-matching nonlinear process leading to a broadband resonant radiation. The broadband OCR investigated in the chalcogenide waveguide may find applications in on-chip wavelength conversion and near-infrared pulse generation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ranka, R. Windeler, and A. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25, 25–27 (2000).
    [CrossRef]
  2. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12, 124–135 (2004).
    [CrossRef] [PubMed]
  3. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express14, 11997–12007 (2006).
    [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
    [CrossRef]
  5. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  6. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express17, 9858–9872 (2009).
    [CrossRef] [PubMed]
  7. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
    [CrossRef] [PubMed]
  8. S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010).
    [CrossRef]
  9. M. R. E. Lamont, B. Luther-Davies, D. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16, 14938–14944 (2008).
    [CrossRef] [PubMed]
  10. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt.48, 5467–5474 (2009).
    [CrossRef] [PubMed]
  11. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
    [CrossRef]
  12. I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express15, 15242–15249 (2007).
    [CrossRef] [PubMed]
  13. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express20, 1685–1690 (2012).
    [CrossRef] [PubMed]
  14. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004).
    [CrossRef] [PubMed]
  15. S. Mas, J. Caraquitena, J. V. Galán, P. Sanchis, and J. Martí, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express18, 20839–20844 (2010).
    [CrossRef] [PubMed]
  16. M. Zhu, H. J. Liu, X. F. Li, N. Huang, Q. B. Sun, J. Wen, and Z. L. Wang, “Ultrabroadband flat dispersion tailoring of dualslot silicon waveguides,” Opt. Express20, 15899–15907 (2012).
    [CrossRef] [PubMed]
  17. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15, 9205–9221 (2007).
    [CrossRef]
  18. B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett.43, 967–968 (2007).
    [CrossRef]
  19. S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011).
    [CrossRef]
  20. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express15, 14414–14421 (2007).
    [CrossRef] [PubMed]
  21. X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
    [CrossRef]
  22. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett.27, 1046–1048 (2002).
    [CrossRef]

2012 (2)

2011 (1)

S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011).
[CrossRef]

2010 (2)

S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010).
[CrossRef]

S. Mas, J. Caraquitena, J. V. Galán, P. Sanchis, and J. Martí, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express18, 20839–20844 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

2007 (4)

2006 (2)

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express14, 11997–12007 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

2004 (3)

2003 (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

Aggarwal, I. D.

Agrawal, G. P.

S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010).
[CrossRef]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

Almeida, V. R.

Ashihara, S.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Austin, D. R.

Baker, N. J.

Barrios, C. A.

Beausoleil, R. G.

Bhadra, S. K.

S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010).
[CrossRef]

Biancalana, F.

S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011).
[CrossRef]

Boppart, S. A.

Brown, T. G.

Bulla, D. A.

Caraquitena, J.

Cha, M.

Chen, X.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Chen, X. G.

Choi, D.

Choi, D. Y.

Chou, C. Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Courvoisier, F.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett.43, 967–968 (2007).
[CrossRef]

Cristiani, I.

Dadap, J. I.

de Sterke, C. M.

Degiorgio, V.

Dekker, S.

Dudley, J. M.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett.43, 967–968 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

Finsterbusch, K.

Fu, L.

Fuflyigin, V. N.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
[CrossRef]

Galán, J. V.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Ghosh, D.

S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010).
[CrossRef]

Gopinath, J. T.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
[CrossRef]

Green, W. M.

Hsieh, I. W.

Huang, N.

Ippen, E. P.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

Kibler, B.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett.43, 967–968 (2007).
[CrossRef]

King, W. A.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
[CrossRef]

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003).
[CrossRef] [PubMed]

Kurimura, S.

Kuroda, K.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Lacourt, P.-A.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett.43, 967–968 (2007).
[CrossRef]

Lamont, M. R. E.

Li, X. F.

Lin, Q.

Lipson, M.

Liu, H. J.

Liu, X. P.

Luan, F.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Magi, E.

Martí, J.

Mas, S.

Moss, D. J.

Nguyen, H. C.

Osgood, R. M.

Panoiu, N. C.

Pelusi, M. D.

Podlipensky, A.

S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011).
[CrossRef]

Ranka, J.

Ro, J. H.

Rode, A. V.

Roy, S.

S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010).
[CrossRef]

Russell, P. St. J.

S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003).
[CrossRef] [PubMed]

Sanchis, P.

Sanghera, J. S.

Shaw, L. B.

Shimura, T.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Shurgalin, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
[CrossRef]

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003).
[CrossRef] [PubMed]

Soljacic, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
[CrossRef]

Stark, S.

S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011).
[CrossRef]

Stentz, A.

Sun, Q. B.

Ta’eed, V. G.

Taira, T.

Tartara, L.

Tediosi, R.

Tu, H.

Tuniz, A.

Vlasov, Y. A.

Wang, Z. L.

Wen, J.

Willner, A. E.

Windeler, R.

Xia, F. N.

Xiong, C.

Xu, Q. F.

Yan, Y.

Yu, N. E.

Yue, Y.

Zeng, X.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Zhang, L.

Zhu, M.

Appl. Opt. (1)

Electron. Lett. (1)

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett.43, 967–968 (2007).
[CrossRef]

J. Appl. Phys. (1)

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004).
[CrossRef]

Opt. Commun. (2)

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010).
[CrossRef]

Opt. Express (10)

S. Mas, J. Caraquitena, J. V. Galán, P. Sanchis, and J. Martí, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express18, 20839–20844 (2010).
[CrossRef] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express20, 1685–1690 (2012).
[CrossRef] [PubMed]

M. Zhu, H. J. Liu, X. F. Li, N. Huang, Q. B. Sun, J. Wen, and Z. L. Wang, “Ultrabroadband flat dispersion tailoring of dualslot silicon waveguides,” Opt. Express20, 15899–15907 (2012).
[CrossRef] [PubMed]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express14, 11997–12007 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15, 9205–9221 (2007).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express15, 14414–14421 (2007).
[CrossRef] [PubMed]

I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express15, 15242–15249 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16, 14938–14944 (2008).
[CrossRef] [PubMed]

H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express17, 9858–9872 (2009).
[CrossRef] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12, 124–135 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (2)

S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011).
[CrossRef]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Chromatic dispersion tailored by using different heights of (a) lower-layer As2S3 (HS = 125 nm) and (b) silica slot (HL = 815 nm). The inset in (a) is the structural geometry of an As2S3 slot waveguide. (c) Effective mode area and nonlinear coefficient vs. wavelength, and the insert in (c) is mode field distributions.

Fig. 2
Fig. 2

(a) Phase-matching topologies (NS = 1) corresponding to four dispersion profiles plotted in Fig. 1(a). (b) PM topologies (HL =815 nm) with respect to the input NS (the gray areas are anomalous GVD regions, A and N represent anomalous and normal GVD, respectively). The input pulse is 50 fs (FWHM) with a hyperbolic secant shape.

Fig. 3
Fig. 3

(a) Spectral and (b) temporal dynamics of 50 fs input soliton (NS = 2) at the wavelength of 1.8 μm in As2S3 slot waveguide, A and N represent anomalous and normal GVD. (c) Spectrum at the soliton fission (red line) and the output (blue line). (d) PM ≡ βs(λp) − β(λ) curves at the different soliton wavelengths λp and (e) GV curve.

Fig. 4
Fig. 4

(a) Output spectra intensities under the different dispersion profiles (the inset is the OCR conversion efficiency vs. HL). (b) Pulse intensities of the OCR by filtering away the spectrum shorter than 2.25 μm (under the dispersion profiles HL = 815 nm).

Fig. 5
Fig. 5

Pulse spectrograms at (a) 2.5-cm (b) 5-cm (c) 10-cm and (d) 15-cm distance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( z , T ) T + α 2 A ( z , T ) = 1 { [ β ( ω ) β ( ω 0 ) β ( 1 ) ( ω 0 ) ( ω ω 0 ) ] A ˜ ( z , ω ) } + i γ ( 1 + i ω 0 T ) A ( z , T ) × + R ( T T ) | A ( z , T ) | 2 d T

Metrics