Abstract

The high-order cladding modes of conventional single mode fiber come in semi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. Using tilted fiber Bragg gratings to excite these mode families separately, we show how plasmonic coupling to a thin gold coating on the surface of the fiber modifies the effective indices of the modes differently according to polarization and to mode order. In particular, we show the existence of a single “apolarized” grating resonance, with equal effective index for all input polarization states. This special resonance provides direct evidence of the excitation of a surface plasmon on the metal surface but also an absolute wavelength reference that allows for the precise localization of the most sensitive resonances in refractometric and biochemical sensing applications. Two plasmon interrogation methods are proposed, based on wavelength and amplitude measurements. Finally, we use a biotin-streptavidin biomolecular recognition experiment to demonstrate that differential spectral transmission measurements of a fine comb of cladding mode resonances in the vicinity of the apolarized resonance provide the most accurate method to extract information from plasmon-assisted Tilted fiber Bragg gratings, down to pM concentrations and at least 10−5 refractive index changes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  2. J. Dostálek, J. Přibyl, J. Homola, and P. Skládal, “Multichannel SPR biosensor for detection of endocrine-disrupting compounds,” Anal. Bioanal. Chem.389(6), 1841–1847 (2007).
    [CrossRef] [PubMed]
  3. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16505 .
    [CrossRef] [PubMed]
  4. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun.281(6), 1486–1491 (2008).
    [CrossRef]
  5. T. Schuster, R. Herschel, N. Neumann, and C. G. Schaffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol.30(8), 1003–1008 (2012).
    [CrossRef]
  6. Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett.35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  7. F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
    [CrossRef] [PubMed]
  8. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 1–26 /DOI 10.1002 (2012).
  9. G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
    [CrossRef]
  10. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
    [CrossRef]
  11. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  12. C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
    [CrossRef] [PubMed]
  13. Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
    [CrossRef] [PubMed]
  14. V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt.50(22), 4257–4261 (2011).
    [CrossRef] [PubMed]
  15. C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
    [CrossRef]

2012 (3)

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 1–26 /DOI 10.1002 (2012).

T. Schuster, R. Herschel, N. Neumann, and C. G. Schaffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol.30(8), 1003–1008 (2012).
[CrossRef]

2011 (4)

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
[CrossRef] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt.50(22), 4257–4261 (2011).
[CrossRef] [PubMed]

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun.281(6), 1486–1491 (2008).
[CrossRef]

2007 (2)

J. Dostálek, J. Přibyl, J. Homola, and P. Skládal, “Multichannel SPR biosensor for detection of endocrine-disrupting compounds,” Anal. Bioanal. Chem.389(6), 1841–1847 (2007).
[CrossRef] [PubMed]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

2005 (1)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

Albert, J.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 1–26 /DOI 10.1002 (2012).

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
[CrossRef] [PubMed]

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt.50(22), 4257–4261 (2011).
[CrossRef] [PubMed]

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett.35(5), 637–639 (2010).
[CrossRef] [PubMed]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Baldini, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Berini, P.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

Blair, D. A.

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Brenci, M.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Caucheteur, C.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 1–26 /DOI 10.1002 (2012).

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
[CrossRef] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt.50(22), 4257–4261 (2011).
[CrossRef] [PubMed]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

Chan, C. F.

Chen, C.

Chiavaioli, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Dakka, M. A.

DeRosa, M. C.

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Dostálek, J.

J. Dostálek, J. Přibyl, J. Homola, and P. Skládal, “Multichannel SPR biosensor for detection of endocrine-disrupting compounds,” Anal. Bioanal. Chem.389(6), 1841–1847 (2007).
[CrossRef] [PubMed]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

Francis, T. J.

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Giannetti, A.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Gupta, B. D.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun.281(6), 1486–1491 (2008).
[CrossRef]

Herschel, R.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16505 .
[CrossRef] [PubMed]

J. Dostálek, J. Přibyl, J. Homola, and P. Skládal, “Multichannel SPR biosensor for detection of endocrine-disrupting compounds,” Anal. Bioanal. Chem.389(6), 1841–1847 (2007).
[CrossRef] [PubMed]

Jafari, A.

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

Laronche, A.

Mégret, P.

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt.50(22), 4257–4261 (2011).
[CrossRef] [PubMed]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

Neumann, N.

Piliarik, M.

Pribyl, J.

J. Dostálek, J. Přibyl, J. Homola, and P. Skládal, “Multichannel SPR biosensor for detection of endocrine-disrupting compounds,” Anal. Bioanal. Chem.389(6), 1841–1847 (2007).
[CrossRef] [PubMed]

Schaffer, C. G.

Schuster, T.

Shao, L.-Y.

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun.281(6), 1486–1491 (2008).
[CrossRef]

Shevchenko, Y. Y.

Skládal, P.

J. Dostálek, J. Přibyl, J. Homola, and P. Skládal, “Multichannel SPR biosensor for detection of endocrine-disrupting compounds,” Anal. Bioanal. Chem.389(6), 1841–1847 (2007).
[CrossRef] [PubMed]

Thomson, D. J.

Trono, C.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun.281(6), 1486–1491 (2008).
[CrossRef]

Voisin, V.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt.50(22), 4257–4261 (2011).
[CrossRef] [PubMed]

Walsh, R.

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Wuilpart, M.

Anal. Bioanal. Chem. (2)

J. Dostálek, J. Přibyl, J. Homola, and P. Skládal, “Multichannel SPR biosensor for detection of endocrine-disrupting compounds,” Anal. Bioanal. Chem.389(6), 1841–1847 (2007).
[CrossRef] [PubMed]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Anal. Chem. (1)

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem.83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

Opt. Commun. (1)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun.281(6), 1486–1491 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 1–26 /DOI 10.1002 (2012).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Amplitude transmitted spectrum of an SPR-TFBG immersed in salted water.

Fig. 2
Fig. 2

Transmitted amplitude spectra for two orthogonal SOPs (S and P polarization modes) of a TFBG immersed in salted water (SRI = 1.338).

Fig. 3
Fig. 3

Evolution of selected cladding mode resonances on the blue side of the SPR signature (both in amplitude and wavelength) as a function of the input SOP.

Fig. 4
Fig. 4

Evolution of selected cladding mode resonances on the red side of the SPR signature (both in amplitude and wavelength) as a function of the input SOP.

Fig. 5
Fig. 5

Cladding mode resonance minima (points) evolution as a function of an SRI change of 3.6 10−4 RIU. The spectrum corresponds to the ΔSRI = 0.0 10−4 case.

Fig. 6
Fig. 6

Selected cladding mode resonance shifts for an SRI change of 3.6 10−4 RIU.

Fig. 7
Fig. 7

Experimental relative wavelength shift (left) and amplitude variation (right) of selected cladding mode resonances for an SRI change of 3.6 10−4 RIU.

Fig. 8
Fig. 8

Simulated mode loss as a function of the resonance wavelength for a standard single mode fiber covered by a 30 nm gold layer immersed in liquids of refractive index equal to 1.32 (a), 1.34 (b), 1.36 (c) and 1.38 (d). Modes corresponding to P polarization are black and blue, S polarization modes are green and red. The wavelength separation between S and P modes as a function of S wavelengths is displayed in the top of each subplot.

Fig. 9
Fig. 9

Simulated relative wavelength shift (left) and relative mode loss variation (right) of selected cladding mode resonances for an SRI change of 1.2 10−3 RIU.

Fig. 10
Fig. 10

Evolution of the peak wavelength (mode 0) and the peak amplitude (mode 2) as a function of the streptavidin concentration.

Metrics