Abstract

A theoretical analysis to enhance the quantum efficiency of a meander-line superconducting single photon detector without increasing the length or thickness of the active element is proposed. The general idea is to utilize the plasmonic nature of a superconducting layer to increase the surface absorption of the input optical signal. To satisfy both optical guiding and photon detection considerations of the design, a coefficient is introduced as a measure to maintain the device sensitivity while crossing over from the current crowding to vortex-based detection mechanisms.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. V. kovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
    [CrossRef]
  2. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
    [CrossRef]
  3. M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011).
    [CrossRef]
  4. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3, 569–576 (2009).
    [CrossRef]
  5. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
  6. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
    [CrossRef]
  7. S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
    [CrossRef]
  8. R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
    [CrossRef]
  9. L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
    [CrossRef]
  10. A. Hamed Majedi, “Theoretical investigations on THz and optical superconductive surface plasmon interface,” IEEE Trans. App. Supercond.19, 907–910 (2009).
    [CrossRef]
  11. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7, 1376–1380 (2007).
    [CrossRef] [PubMed]
  12. C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
    [CrossRef]
  13. A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, “Quantum detection by current carrying superconducting film,” Phys. C Supercond.351, 349–356 (2001).
    [CrossRef]
  14. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
    [CrossRef]
  15. A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990).
    [CrossRef]
  16. H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
    [CrossRef]
  17. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
    [CrossRef]
  18. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
    [CrossRef]
  19. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: Reflection pole method and wavevector density method,” J. Lightwave Technol.17, 929–941 (1999).
    [CrossRef]
  20. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
    [CrossRef]
  21. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000).
    [CrossRef]
  22. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
    [CrossRef]
  23. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express14, 12409–12418 (2006).
    [CrossRef] [PubMed]
  24. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
    [CrossRef] [PubMed]
  25. N. E. Glass and D. Rogovin, “Transient electrodynamic response of thin-film superconductors to laser radiation,” Phys. Rev. B39, 11327–11344 (1989).
    [CrossRef]
  26. R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
    [CrossRef]
  27. A. M. Kadin, M. Leung, and A. D. Smith, “Photon-assisted vortex depairing in two-dimensional superconductors,” Phys. Rev. Lett.65, 3193–3196 (1990).
    [CrossRef] [PubMed]
  28. A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: A new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett.69, 3938–3940 (1996).
    [CrossRef]
  29. K. K. Likharev, “Superconducting weak links,” Rev. Mod. Phys.51, 101–159 (1979).
    [CrossRef]
  30. H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
    [CrossRef]
  31. D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
    [CrossRef]
  32. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
    [CrossRef]
  33. A. N. Zotova and D. Y. Vodolazov, “Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach,” Phys. Rev. B85, 024509 (2012).
    [CrossRef]
  34. M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).
  35. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express19, 3592–3598 (2011).
    [CrossRef] [PubMed]
  36. M. Kupriyanov and V. Lukichov, “Temperature dependence of the pair-breaking current density in superconductors,” Fiz. Nizk. Temp.6, 445–453 (1980).
  37. T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
    [CrossRef]
  38. L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B85, 014505 (2012).
    [CrossRef]
  39. L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
    [CrossRef]

2012 (4)

A. N. Zotova and D. Y. Vodolazov, “Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach,” Phys. Rev. B85, 024509 (2012).
[CrossRef]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B85, 014505 (2012).
[CrossRef]

2011 (6)

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011).
[CrossRef]

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express19, 3592–3598 (2011).
[CrossRef] [PubMed]

2010 (4)

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

2009 (5)

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
[CrossRef]

A. Hamed Majedi, “Theoretical investigations on THz and optical superconductive surface plasmon interface,” IEEE Trans. App. Supercond.19, 907–910 (2009).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
[CrossRef]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3, 569–576 (2009).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. V. kovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

2008 (2)

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
[CrossRef] [PubMed]

2007 (3)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7, 1376–1380 (2007).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

2006 (2)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express14, 12409–12418 (2006).
[CrossRef] [PubMed]

2004 (1)

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

2001 (3)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
[CrossRef]

A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, “Quantum detection by current carrying superconducting film,” Phys. C Supercond.351, 349–356 (2001).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000).
[CrossRef]

1999 (1)

1996 (1)

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: A new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett.69, 3938–3940 (1996).
[CrossRef]

1990 (2)

A. M. Kadin, M. Leung, and A. D. Smith, “Photon-assisted vortex depairing in two-dimensional superconductors,” Phys. Rev. Lett.65, 3193–3196 (1990).
[CrossRef] [PubMed]

A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990).
[CrossRef]

1989 (1)

N. E. Glass and D. Rogovin, “Transient electrodynamic response of thin-film superconductors to laser radiation,” Phys. Rev. B39, 11327–11344 (1989).
[CrossRef]

1980 (1)

M. Kupriyanov and V. Lukichov, “Temperature dependence of the pair-breaking current density in superconductors,” Fiz. Nizk. Temp.6, 445–453 (1980).

1979 (1)

K. K. Likharev, “Superconducting weak links,” Rev. Mod. Phys.51, 101–159 (1979).
[CrossRef]

1811 (1)

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Adato, R.

Anant, V.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

Anemogiannis, E.

Annunziata, A. J.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Antelius, M.

Baek, B.

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

Bartolf, H.

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

Batista, C. D.

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Beetz, J.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Berggren, K. K.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

Berini, P.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7, 1376–1380 (2007).
[CrossRef] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000).
[CrossRef]

Bulaevskii, L. N.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B85, 014505 (2012).
[CrossRef]

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Cao, C.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Casaburi, A.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Charbonneau, R.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7, 1376–1380 (2007).
[CrossRef] [PubMed]

Chen, J.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Clem, J. R.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

Cristiano, R.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Dauler, E. A.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

Delaet, B.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Driessen, E. F. C.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Ejrnaes, M.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Engel, A.

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

Fiore, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Frunzio, L.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Frydman, A.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Fujiwara, M.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. V. kovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Gaggero, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3, 569–576 (2009).
[CrossRef]

Gaylord, T. K.

Gippius, N.

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Glass, N. E.

N. E. Glass and D. Rogovin, “Transient electrodynamic response of thin-film superconductors to laser radiation,” Phys. Rev. B39, 11327–11344 (1989).
[CrossRef]

Glytsis, E. N.

Gol’tsman, G.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
[CrossRef]

Gol’tsman, G. N.

A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, “Quantum detection by current carrying superconducting film,” Phys. C Supercond.351, 349–356 (2001).
[CrossRef]

Graf, M. J.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B85, 014505 (2012).
[CrossRef]

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Guo, J.

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Gylfason, K. B.

Hadfield, R. H.

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Hamed Majedi, A.

A. Hamed Majedi, “Theoretical investigations on THz and optical superconductive surface plasmon interface,” IEEE Trans. App. Supercond.19, 907–910 (2009).
[CrossRef]

Henrich, D.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

Hofherr, M.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Höfling, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Hortensius, H. L.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

Hubers, H.-W.

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

Hübers, H.-W.

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Il’in, K.

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

Ilin, K.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

Ilin, K. S.

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Jahanmirinejad, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Jia, T.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Jin, B.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Johnson, M. W.

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: A new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett.69, 3938–3940 (1996).
[CrossRef]

Jorel, C.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Kadin, A. M.

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: A new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett.69, 3938–3940 (1996).
[CrossRef]

A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990).
[CrossRef]

A. M. Kadin, M. Leung, and A. D. Smith, “Photon-assisted vortex depairing in two-dimensional superconductors,” Phys. Rev. Lett.65, 3193–3196 (1990).
[CrossRef] [PubMed]

Kamp, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Kang, L.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Kerman, A. J.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

Klapwijk, T. M.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

Kogan, V. G.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B85, 014505 (2012).
[CrossRef]

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Korneev, A. A.

A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, “Quantum detection by current carrying superconducting film,” Phys. C Supercond.351, 349–356 (2001).
[CrossRef]

kovic, J. V.

J. L. O’Brien, A. Furusawa, and J. V. kovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Kupriyanov, M.

M. Kupriyanov and V. Lukichov, “Temperature dependence of the pair-breaking current density in superconductors,” Fiz. Nizk. Temp.6, 445–453 (1980).

Lahoud, N.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7, 1376–1380 (2007).
[CrossRef] [PubMed]

Leoni, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Leung, M.

A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990).
[CrossRef]

A. M. Kadin, M. Leung, and A. D. Smith, “Photon-assisted vortex depairing in two-dimensional superconductors,” Phys. Rev. Lett.65, 3193–3196 (1990).
[CrossRef] [PubMed]

Likharev, K. K.

K. K. Likharev, “Superconducting weak links,” Rev. Mod. Phys.51, 101–159 (1979).
[CrossRef]

Lipatov, A.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
[CrossRef]

Lukichov, V.

M. Kupriyanov and V. Lukichov, “Temperature dependence of the pair-breaking current density in superconductors,” Fiz. Nizk. Temp.6, 445–453 (1980).

Makise, K.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

Matthews, J.

M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011).
[CrossRef]

Mattioli, F.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Miki, S.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

Miller, A. J.

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

Mirin, R. P.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Murduck, J. M.

A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990).
[CrossRef]

Nam, S.

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

Nam, S. W.

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Natarajan, C. M.

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

O’Brien, J.

M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011).
[CrossRef]

O’Brien, J. L.

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. V. kovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Pagano, S.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Peruzzo, A.

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Poizat, J.-P.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Politi, A.

M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011).
[CrossRef]

Prober, D. E.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Qiu, W.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

Quaranta, O.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Rall, D.

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Reichensperger, P.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

Renaud-Goud, P.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Rogovin, D.

N. E. Glass and D. Rogovin, “Transient electrodynamic response of thin-film superconductors to laser radiation,” Phys. Rev. B39, 11327–11344 (1989).
[CrossRef]

Romestain, R.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Rooks, M. J.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Rosfjord, K. M.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

Sahin, D.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Santavicca, D. F.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

Sasaki, M.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

Schilling, A.

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Semenov, A.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Semenov, A. D.

A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, “Quantum detection by current carrying superconducting film,” Phys. C Supercond.351, 349–356 (2001).
[CrossRef]

Siegel, M.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Smith, A. D.

A. M. Kadin, M. Leung, and A. D. Smith, “Photon-assisted vortex depairing in two-dimensional superconductors,” Phys. Rev. Lett.65, 3193–3196 (1990).
[CrossRef] [PubMed]

A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990).
[CrossRef]

Sobolewski, R.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
[CrossRef]

Sohlström, H.

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

Stevens, M. J.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Sun, G.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Terai, H.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

Thompson, M.

M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011).
[CrossRef]

Verevkin, A.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
[CrossRef]

Villegier, J.-C.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Vodolazov, D. Y.

A. N. Zotova and D. Y. Vodolazov, “Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach,” Phys. Rev. B85, 024509 (2012).
[CrossRef]

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

Wang, I.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Wang, Z.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

Wilsher, K.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
[CrossRef]

Wu, P.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Xu, W.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Yamashita, T.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3, 569–576 (2009).
[CrossRef]

Yang, J. K. W.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3, 569–576 (2009).
[CrossRef]

Zhang, L.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Zhao, Q.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Zhong, Y.

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Zotova, A.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

Zotova, A. N.

A. N. Zotova and D. Y. Vodolazov, “Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach,” Phys. Rev. B85, 024509 (2012).
[CrossRef]

Appl. Phys. B (1)

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011).
[CrossRef]

Appl. Phys. Lett. (9)

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).

C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010).
[CrossRef]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001).
[CrossRef]

A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990).
[CrossRef]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: A new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett.69, 3938–3940 (1996).
[CrossRef]

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011).
[CrossRef]

Fiz. Nizk. Temp. (1)

M. Kupriyanov and V. Lukichov, “Temperature dependence of the pair-breaking current density in superconductors,” Fiz. Nizk. Temp.6, 445–453 (1980).

IEEE Trans. App. Supercond. (2)

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009).
[CrossRef]

A. Hamed Majedi, “Theoretical investigations on THz and optical superconductive surface plasmon interface,” IEEE Trans. App. Supercond.19, 907–910 (2009).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007).
[CrossRef]

IET Circuits Devices Syst. (1)

M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011).
[CrossRef]

J. Appl. Phys. (1)

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. (1)

M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).

Nano Lett. (1)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7, 1376–1380 (2007).
[CrossRef] [PubMed]

Nat. Photonics (3)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3, 569–576 (2009).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. V. kovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

New J. Phys. (1)

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004).
[CrossRef]

Opt. Express (3)

Phys. C Supercond. (1)

A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, “Quantum detection by current carrying superconducting film,” Phys. C Supercond.351, 349–356 (2001).
[CrossRef]

Phys. Rev. B (9)

H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010).
[CrossRef]

N. E. Glass and D. Rogovin, “Transient electrodynamic response of thin-film superconductors to laser radiation,” Phys. Rev. B39, 11327–11344 (1989).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
[CrossRef]

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012).
[CrossRef]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

A. N. Zotova and D. Y. Vodolazov, “Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach,” Phys. Rev. B85, 024509 (2012).
[CrossRef]

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B85, 014505 (2012).
[CrossRef]

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

A. M. Kadin, M. Leung, and A. D. Smith, “Photon-assisted vortex depairing in two-dimensional superconductors,” Phys. Rev. Lett.65, 3193–3196 (1990).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

K. K. Likharev, “Superconducting weak links,” Rev. Mod. Phys.51, 101–159 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layered structure of the proposed detector. Superconducting layer (nanowires) with thickness td is placed on top of a Si layer of thickness t and width w in an environment of HSQ/SiO2 cladding layers. The HSQ layer is used during patterning of the wires and can be kept as a protective layer.

Fig. 2
Fig. 2

Real part of effective index versus normalized dielectric core thickness (normalized to the free-space wavelength) for 100nm and 8nm thick NbTiN superconducting films. For the 100nm case, the fundamental plasmonic mode has a cut-off thickness which is a direct consequence of the single interface plasmonic excitation at the interface of core and superconducting layers. This behavior can be attributed to the penetration depth of the optical mode being larger than the thickness of the superconducting layer. This condition is not satisfied for the 8nm structure. Therefore, no plasmonic excitation is expected unless the structure looks symmetric to the optical mode which happens only for small core thicknesses. Points P1, P2, and P3 will be used later in Fig. 3 with the same color scheme.

Fig. 3
Fig. 3

Imaginary part of effective index versus core thickness (t/λ0) for the fundamental plasmonic mode (blue curve) as well as the transverse mode field diameters versus core width (w/λ0) for three different core thicknesses (green, black and orange curves). The larger the imaginary part of effective index, the stronger the absorption in the dispersive layer. From this figure, the maximum absorption happens at a core thickness of 0.14λ0. This high absorption is achieved at the expense of not having a confined TM0 mode when the dispersive layer is absent. By accepting lower confinement for optical mode, higher transverse confinement is obtainable. For instance, for a 0.2λ0 core thickness, the core width resulting in the minimum transverse mode field size is just 0.09λ0. Note that by getting far from the maximum point of the blue curve, the lateral mode starts to decouple from the transverse mode and hence a smaller variation in the transverse mode field diameter is predicted. This behavior is observed by comparing mode field sizes of 0.17λ0 and 0.2λ0 core thicknesses. Points P1, P2, and P3 refer to three points in Fig. 2.

Fig. 4
Fig. 4

(a) Transient electrodynamics of the energy gap and quasiparticle density as a function of time and distance from the hotspot location. (b) Minimum weight coefficient versus wire width for an IR photon with 1310nm wavelength (black line). The weight coefficient can be considered as a measure of how effective the current crowding model is for a specific film width and also provides an approximate normalized current required for unpinning the vortex and antivortex. Red line shows the minimum width requirement for photons with higher energy (1.5 times higher energy compared to the black curve). For these higher energy photons, at a fixed nanowire width, lower current is required to have the same sensitivity.

Fig. 5
Fig. 5

Top view of a sample connection link at the input terminal. This link can address the problem of current crowding in a high filling factor device. Optical input terminal can be either an inverse taper coupler or a surface grating coupler [35].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ t D Q P 2 ] n Q P = 2 n p h τ B n Q P τ R [ t D p h 2 ] n p h = n Q P / 2 τ R [ n p h τ B + n p h n p h 0 τ e s ]
n Q P = 4 × 2.08 N ( 0 ) k B T c I ( β )
I ( β ) = 0 d y 1 1 + exp [ β 2 ( 1 + exp ( 2 F ( β ) ) y 2 ) ] F ( β ) = β 2 0 d x x sinh 1 x sech 2 ( [ 1 + x 2 ] 1 / 2 β / 2 ) 1 + x 2
η w = 1 ( α R w ) 2 in d s n Q P n Q P 0 in d s n Q P + n Q P 0

Metrics