Abstract

In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
    [CrossRef]
  2. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  3. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett.32(21), 3074–3076 (2007).
    [CrossRef] [PubMed]
  4. F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008).
    [CrossRef] [PubMed]
  5. W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
    [CrossRef]
  6. Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
    [CrossRef]
  7. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
    [CrossRef]
  8. W. Tao, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
    [CrossRef]
  9. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B27(3), 370–374 (2010).
    [CrossRef]
  10. H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
    [CrossRef] [PubMed]
  11. F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
    [CrossRef]
  12. P. Lu and Q. Chen, “Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications,” Opt. Lett.36(2), 268–270 (2011).
    [CrossRef] [PubMed]
  13. R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express19(4), 3124–3129 (2011).
    [CrossRef] [PubMed]
  14. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express20(14), 15406–15417 (2012).
    [CrossRef] [PubMed]
  15. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express20(10), 11109–11120 (2012).
    [CrossRef] [PubMed]
  16. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett.37(1), 67–69 (2012).
    [CrossRef] [PubMed]
  17. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
    [CrossRef]
  18. P. R. Watekar, S. Ju, Y. S. Yoon, Y. S. Lee, and W.-T. Han, “Design of a trenched bend insensitive single mode optical fiber using spot size definitions,” Opt. Express16(18), 13545–13551 (2008).
    [CrossRef] [PubMed]
  19. P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express17(12), 10350–10363 (2009).
    [CrossRef] [PubMed]
  20. P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express17(22), 20155–20166 (2009).
    [CrossRef] [PubMed]
  21. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” J. Lightwave Technol.27(3), 376–382 (2009).
    [CrossRef]
  22. P. R. Watekar, S. Ju, and W.-T. Han, “Optimized design of trenched optical fiber for ultralow bending loss at 5 mm of bending diameter,” Appl. Opt.50(25), E97–E101 (2011).
    [CrossRef]
  23. M.-Y. Chen and Y.-K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol.29(15), 2216–2222 (2011).
    [CrossRef]
  24. D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009).
    [CrossRef]
  25. N. H. Vu, J.-T. Kim, E.-S. Kim, C.-H. Jung, K.-G. Lee, and I.-K. Hwang, “Ultralow bending loss fibers with higher-order mode strippers,” Opt. Express18(19), 19456–19461 (2010).
    [CrossRef] [PubMed]
  26. T. Matsui, K. Nakajima, Y. Goto, T. Shimizu, and T. Kurashima, “Design of single-mode and low-bending-loss hole-assisted fiber and its MPI characteristics,” J. Lightwave Technol.29(17), 2499–2505 (2011).
    [CrossRef]
  27. A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997).
    [CrossRef]

2012

2011

2010

2009

M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” J. Lightwave Technol.27(3), 376–382 (2009).
[CrossRef]

P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express17(12), 10350–10363 (2009).
[CrossRef] [PubMed]

P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express17(22), 20155–20166 (2009).
[CrossRef] [PubMed]

D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009).
[CrossRef]

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

W. Tao, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

2008

2007

2003

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
[CrossRef]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
[CrossRef]

1997

A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997).
[CrossRef]

Araújo, F. M.

Badcock, R.

A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997).
[CrossRef]

Bickham, S. R.

Boivin, D.

D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009).
[CrossRef]

Bookbinder, D. C.

Caldas, P.

Cao, W.

Chen, M.-Y.

Chen, N.

F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
[CrossRef]

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008).
[CrossRef] [PubMed]

Chen, Q.

P. Lu and Q. Chen, “Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications,” Opt. Lett.36(2), 268–270 (2011).
[CrossRef] [PubMed]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Chen, Z.

F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
[CrossRef]

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008).
[CrossRef] [PubMed]

Choi, H. Y.

Chu, J.

Cui, Y.

de Matos, C. J.

de Montmorillon, L.-A.

D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009).
[CrossRef]

Desorcie, R. B.

Dong, X.

Englebert, J. J.

Farahi, F.

Fernando, G. F.

A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997).
[CrossRef]

Ferreira, L. A.

Frazão, O.

Gerosa, R. M.

Gong, H.

Goto, Y.

Guo, H.

Han, W.-T.

Hogari, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
[CrossRef]

Hwang, I.-K.

Jin, Y.

Johnson, J. J.

Ju, S.

Jung, C.-H.

Kim, E.-S.

Kim, J.-T.

Kim, M. J.

Kurashima, T.

Lan, X.

W. Tao, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
[CrossRef]

Lee, B. H.

Lee, K.-G.

Lee, Y. S.

Lewis, K. A.

Li, L.

Li, M.-J.

Liang, R.

Liang, W.

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

Liu, D.

Liu, H.

F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
[CrossRef]

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

Liu, S.

Liu, Y.

F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
[CrossRef]

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

Lu, P.

Martin, A.

A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997).
[CrossRef]

Matsui, T.

McDermott, M. A.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Menezes, L. S.

Nakajima, K.

T. Matsui, K. Nakajima, Y. Goto, T. Shimizu, and T. Kurashima, “Design of single-mode and low-bending-loss hole-assisted fiber and its MPI characteristics,” J. Lightwave Technol.29(17), 2499–2505 (2011).
[CrossRef]

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
[CrossRef]

Nightingale, C.

A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997).
[CrossRef]

Nolan, D. A.

Pang, F.

Provost, L.

D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009).
[CrossRef]

Sankawa, L.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
[CrossRef]

Santos, J. L.

Shen, C.

Shimizu, T.

Shum, P. P.

Sillard, P.

D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Spadoti, D. H.

Sun, Q.

Tajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
[CrossRef]

Tandon, P.

Tao, W.

W. Tao, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

Tian, Z.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

Viegas, J.

Vu, N. H.

Wang, D. N.

Wang, G.

Wang, J.

Wang, T.

F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
[CrossRef]

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008).
[CrossRef] [PubMed]

Wang, Y.

Watekar, P. R.

Wo, J.

Xia, L.

Xiang, W.

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008).
[CrossRef] [PubMed]

Xiao, H.

W. Tao, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

Xie, Z.

Yam, S. S.-H.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

Yang, M.

Yoon, Y. S.

You, Y.

Zeng, X.

F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
[CrossRef]

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008).
[CrossRef] [PubMed]

Zhang, Y.-K.

Zhong, C.

Zhou, J.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
[CrossRef]

Zou, X.

Appl. Opt.

Appl. Phys. Lett.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Tao, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009).
[CrossRef]

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003).
[CrossRef]

D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009).
[CrossRef]

A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997).
[CrossRef]

IEEE Sens. J.

F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

N. H. Vu, J.-T. Kim, E.-S. Kim, C.-H. Jung, K.-G. Lee, and I.-K. Hwang, “Ultralow bending loss fibers with higher-order mode strippers,” Opt. Express18(19), 19456–19461 (2010).
[CrossRef] [PubMed]

P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express17(12), 10350–10363 (2009).
[CrossRef] [PubMed]

P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express17(22), 20155–20166 (2009).
[CrossRef] [PubMed]

F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008).
[CrossRef] [PubMed]

P. R. Watekar, S. Ju, Y. S. Yoon, Y. S. Lee, and W.-T. Han, “Design of a trenched bend insensitive single mode optical fiber using spot size definitions,” Opt. Express16(18), 13545–13551 (2008).
[CrossRef] [PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express19(4), 3124–3129 (2011).
[CrossRef] [PubMed]

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express20(10), 11109–11120 (2012).
[CrossRef] [PubMed]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express20(14), 15406–15417 (2012).
[CrossRef] [PubMed]

Opt. Fiber Technol.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Left: A schematic illustration of the bend-insensitive fiber based Mach-Zehnder interferometer. Right: A schematic cross-section of the bend-insensitive fiber.

Fig. 2
Fig. 2

A schematic illustration of fiber interferometer vibration sensing based on an intensity modulation scheme.

Fig. 3
Fig. 3

(a) An optical microscope image of the fusion joint area between the BIF (left) and the SMF (right). (b) An optical microscope image of one abrupt taper fabricated on the BIF.

Fig. 4
Fig. 4

(a, b) and (c, d) show attenuation spectra and corresponding spatial frequency spectra of the BIF-MZI-a and BIF-MZI-b, respectively. Insets of (b, d) show the simulated optical field patterns of the inner-cladding modes of BIF-MZI-a and BIF-MZI-b.

Fig. 5
Fig. 5

A schematic experimental setup of vibration measurement. LD, laser diode; ATT, attenuator; PD, Photodetector.

Fig. 6
Fig. 6

Schematic top view of the experimental setup of damped vibration detection.

Fig. 7
Fig. 7

Time-domain spectra and frequency-domain spectra of the BIF-MZI-a with a cantilever length of 10 cm under damped vibrations of (a, b) 5 mm and (c, d) 3 mm deflections, respectively. (e) Fundamental frequencies as a function of initial deflections of the cantilever.

Fig. 8
Fig. 8

(a) Time-domain spectrum of the BIF-MZI-a with a cantilever length of 15 cm under a damped vibration of 3 mm deflection and (b) the corresponding frequency-domain spectrum. (c) Normalized power spectra of the BIF-MZI-a with different cantilever lengths. (d) Fundamental frequencies as a function of cantilever lengths.

Fig. 9
Fig. 9

Schematic top view of the experimental setup of continuous vibration detection.

Fig. 10
Fig. 10

(a, b, c, and d) show the frequency-domain spectra of the BIF-MZI-b when the piezoelectric cylinder was driven by sinusoidal signals of 1 Hz, 3 Hz, 5 Hz, and 10 Hz, respectively. The insets show the corresponding time-domain spectra.

Fig. 11
Fig. 11

(a, b) and (d, e) show the time-domain spectra as well as (c) and (f) the corresponding frequency-domain spectra of the BIF-MZI-b when the piezoelectric cylinder was driven by sinusoidal signals of 100 Hz and 15 kHz, respectively.

Fig. 12
Fig. 12

The frequency-domain spectra of the BIF-MZI-b when the piezoelectric cylinder was driven by high frequency sinusoidal signals from 100 kHz to 500 kHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ ij = Φ core,01 Φ clad,ij = 2πl λ ( n eff core,01 n eff clad,ij )= 2πl λ Δ n eff ij ,
λ m = Δ n eff ij l m ,
I( λ )= I core,01 + I clad,ij +2 I core,01 I clad,ij cos(Δ Φ ij ),
Δ λ m = λ m ' λ m = ( Δ n eff δl+δ n eff l+δ n eff δl ) m λ m ( Δ n eff δl+δ n eff l ) Δ n eff l = λ m (δl/l+δ n eff /Δ n eff )= λ m (δl/l+ p eff δl/l)= λ m (1+ p eff )ε,
f= c 2π EI ρA L 4 ,

Metrics