Abstract

We demonstrate that Raman spectroscopy can be used to characterize and identify particles that are trapped and propelled along optical waveguides. To accomplish this, microscopic particles on a waveguide are moved along the waveguide and then individually addressed by a focused laser beam to obtain their characteristic Raman signature within 1 second acquisition time. The spectrum is used to distinguish between glass and polystyrene particles. After the characterization, the particles continue to be propelled along the straight waveguide. Alternatively, a waveguide loop with a gap is also investigated, and in this case particles are held in the gap for characterization before they are released.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett.21(21), 1768–1770 (1996).
    [CrossRef] [PubMed]
  2. T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett.77(20), 3131–3133 (2000).
    [CrossRef]
  3. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun.239(4-6), 227–235 (2004).
    [CrossRef]
  4. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express18(20), 21053–21061 (2010).
    [CrossRef] [PubMed]
  5. K. Grujic, O. G. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express13(1), 1–7 (2005).
    [CrossRef] [PubMed]
  6. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express15(22), 14322–14334 (2007).
    [CrossRef] [PubMed]
  7. M. Lankers, J. Popp, and W. Kiefer, “Raman and Fluorescence Spectra of Single Optically Trapped Microdroplets in Emulsions,” Appl. Spectrosc.48(9), 1166–1168 (1994).
    [CrossRef]
  8. K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” TrAC Trends in Analytical Chemistry20(5), 255–262 (2001).
    [CrossRef]
  9. C. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett.27(4), 249–251 (2002).
    [CrossRef] [PubMed]
  10. H. Tang, H. Yao, G. Wang, Y. Wang, Y. Q. Li, and M. Feng, “NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers,” Opt. Express15(20), 12708–12716 (2007).
    [CrossRef] [PubMed]
  11. D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt.9(8), S139–S156 (2007).
    [CrossRef]
  12. A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip8(7), 1116–1120 (2008).
    [CrossRef] [PubMed]
  13. H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid.4(1-2), 53–79 (2008).
    [CrossRef]
  14. C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
    [CrossRef] [PubMed]
  15. O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
    [CrossRef] [PubMed]
  16. B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
    [CrossRef]

2012

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

2010

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
[CrossRef] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express18(20), 21053–21061 (2010).
[CrossRef] [PubMed]

2009

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

2008

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip8(7), 1116–1120 (2008).
[CrossRef] [PubMed]

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid.4(1-2), 53–79 (2008).
[CrossRef]

2007

2005

2004

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun.239(4-6), 227–235 (2004).
[CrossRef]

2002

2001

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” TrAC Trends in Analytical Chemistry20(5), 255–262 (2001).
[CrossRef]

2000

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett.77(20), 3131–3133 (2000).
[CrossRef]

1996

1994

Ahluwalia, B. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express18(20), 21053–21061 (2010).
[CrossRef] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

Ajito, K.

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” TrAC Trends in Analytical Chemistry20(5), 255–262 (2001).
[CrossRef]

Chan, J. W.

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip8(7), 1116–1120 (2008).
[CrossRef] [PubMed]

Choo, J.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
[CrossRef] [PubMed]

Chung, B. G.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
[CrossRef] [PubMed]

deMello, A. J.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
[CrossRef] [PubMed]

Dinno, M. A.

Erickson, D.

Feng, M.

Grujic, K.

K. Grujic, O. G. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express13(1), 1–7 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun.239(4-6), 227–235 (2004).
[CrossRef]

Hellesø, O. G.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express18(20), 21053–21061 (2010).
[CrossRef] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

K. Grujic, O. G. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express13(1), 1–7 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun.239(4-6), 227–235 (2004).
[CrossRef]

Hole, J.

Hole, J. P.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun.239(4-6), 227–235 (2004).
[CrossRef]

Hong, J.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
[CrossRef] [PubMed]

Hunt, H. C.

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid.4(1-2), 53–79 (2008).
[CrossRef]

Huser, T.

Kawata, S.

Kiefer, W.

Lankers, M.

Lau, A. Y.

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip8(7), 1116–1120 (2008).
[CrossRef] [PubMed]

Lee, L. P.

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip8(7), 1116–1120 (2008).
[CrossRef] [PubMed]

Li, Y. Q.

Lim, C.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
[CrossRef] [PubMed]

Lipson, M.

Løvhaugen, P.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

McCourt, P.

Perney, N. M. B.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

Petrov, D. V.

D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt.9(8), S139–S156 (2007).
[CrossRef]

Popp, J.

Schmidt, B. S.

Sessions, N. P.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

Subramanian, A. Z.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

Tanaka, T.

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett.77(20), 3131–3133 (2000).
[CrossRef]

Tang, H.

Tani, T.

Torimitsu, K.

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” TrAC Trends in Analytical Chemistry20(5), 255–262 (2001).
[CrossRef]

Wang, G.

Wang, Y.

Wilkinson, J.

Wilkinson, J. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid.4(1-2), 53–79 (2008).
[CrossRef]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun.239(4-6), 227–235 (2004).
[CrossRef]

Xie, C.

Yamamoto, S.

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett.77(20), 3131–3133 (2000).
[CrossRef]

Yang, A. H.

Yao, H.

Analyst (Lond.)

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst (Lond.)135(5), 837–844 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett.77(20), 3131–3133 (2000).
[CrossRef]

Appl. Spectrosc.

IEEE Photon. Technol. Lett.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett.21(19), 1408–1410 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt.9(8), S139–S156 (2007).
[CrossRef]

Lab Chip

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip8(7), 1116–1120 (2008).
[CrossRef] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

Microfluid. Nanofluid.

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid.4(1-2), 53–79 (2008).
[CrossRef]

Opt. Commun.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun.239(4-6), 227–235 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

TrAC Trends in Analytical Chemistry

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” TrAC Trends in Analytical Chemistry20(5), 255–262 (2001).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (4406 KB)     
» Media 2: MOV (5133 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for waveguide propulsion and Raman spectroscopy. Laser L1 (up to 5W at 1070 nm) is coupled into a waveguide with an IR objective lens (NA0.9). The waveguide is imaged with a modified microscope (inside the dotted line). Laser L2 (100 mW at 785.8 nm) is focused with an objective lens (NA1.2) to excite scattering from particles on the surface. Scattered light is collected by the microscope, filtered, and sent to the spectrometer for analysis. A separate white light source and CCD camera is used to image the waveguide.

Fig. 2
Fig. 2

(a, b) Illustration of gap design. c, d) A 3 μm polystyrene sphere is trapped and delivered to a 2 μm wide gap, e) Raman laser is switched on to excite Raman spectra. The diameter of waveguide loop is 100 μm. Online supplementary Media 1.

Fig. 3
Fig. 3

Trapping and Raman spectroscopy of particles on a straight waveguide. Microspheres are trapped and propelled along the waveguide. Imaging with 60X objective lens. Online supplementary Media 2.

Fig. 4
Fig. 4

Raman spectra acquired within 1 second exposure time from a) a 7 μm diameter polystyrene microsphere and b) an 8 μm diameter borosilicate glass microsphere. Three distinct polystyrene Raman peaks are shown in a).

Fig. 5
Fig. 5

Raman spectra acquired in 2 seconds from a 2 μm diameter polystyrene microsphere, trapped in a waveguide gap. a) shows the spectrum at full scale. b) shows the same spectrum with similar axes as in Fig. 5(a). The three dotted lines in each Fig. are inserted for comparison of signal levels in a) and b).

Metrics