Abstract

We present a method for x-ray imaging of objects inside the focal spot of polycapillary optics that resolves details smaller than the focal spot dimensions. This method employs coded aperture imaging, in which the micro-structure of polycapillary optics is treated as the coding pattern. Projection of the object is decoded from a magnified x-ray image of the polycapillary structure which is specifically sharpened by the object. Field of view can be extended by scanning the object across the focal spot.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B48, 283–286 (1990).
    [CrossRef]
  2. M. A. Kumakhov and F. F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep.191, 289–350 (1990).
    [CrossRef]
  3. S. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys.-Usp.46, 1053–1075 (2003).
    [CrossRef]
  4. S. A. Hoffman, D. J. Thiel, and D. H. Bilderback, “Developments in tapered monocapillary and polycapillary glass X-ray concentrators,” Nucl. Instrum. Meth. A347, 384–389 (1994).
    [CrossRef]
  5. L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
    [CrossRef]
  6. A. Bjeoumikhov, “Observation of peculiarities in angular distributions of x-ray radiation after propagation through polycapillary structures,” Phys. Lett. A360, 405–410 (2007).
    [CrossRef]
  7. S. B. Dabagov, M. A. Kumakhov, and S. V. Nikitina, “On the interference of X-rays in multiple reflection optics,” Phys. Lett. A203, 279–282 (1995).
    [CrossRef]
  8. S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
    [CrossRef] [PubMed]
  9. C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray Optics and Instr.2010, 867049 (2010).
  10. N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
    [CrossRef]
  11. L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
    [CrossRef] [PubMed]
  12. B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectroc. Acta Pt. B-Atom. Spectr.60, 41–47 (2005).
    [CrossRef]
  13. V. Chernik and A. Romanov, “X-ray polycapillary imaging microscopy,” Proc. SPIE5943, 158–166 (2005).
  14. J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. ASA1, 172–173 (1968).
  15. E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,”, Appl. Opt.17, 337–347 (1978).
    [CrossRef] [PubMed]
  16. K. A. Nugent, “Coded aperture imaging: a Fourier space analysis,” Appl. Opt.26, 563–569 (1987).
    [CrossRef] [PubMed]
  17. A. Haboub, A. A. MacDowell, S. Marchesini, and D. Y. Parkinson, “Coded aperture imaging for fluorescent x-rays,” Proc. SPIE8502, 850209 (2012).
    [CrossRef]
  18. L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
    [CrossRef]
  19. D. Sayre, “Some implications of a theorem due to Shannon,” Acta Cryst.5, 843–843 (1952).
    [CrossRef]
  20. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
    [CrossRef] [PubMed]
  21. A. M. Zysk, R. W. Schoonover, Q. Xu, and M. A. Anastasio, “Framework for computing the spatial coherence effects of polycapillary x-ray optics,” Opt. Express20, 3975–3982 (2012).
    [CrossRef] [PubMed]
  22. T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
    [CrossRef]
  23. D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
    [CrossRef]
  24. A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
    [CrossRef]
  25. A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt.35, 4420–4425 (1996).
    [CrossRef] [PubMed]
  26. A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
    [CrossRef] [PubMed]

2012

A. Haboub, A. A. MacDowell, S. Marchesini, and D. Y. Parkinson, “Coded aperture imaging for fluorescent x-rays,” Proc. SPIE8502, 850209 (2012).
[CrossRef]

A. M. Zysk, R. W. Schoonover, Q. Xu, and M. A. Anastasio, “Framework for computing the spatial coherence effects of polycapillary x-ray optics,” Opt. Express20, 3975–3982 (2012).
[CrossRef] [PubMed]

2011

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

2010

C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray Optics and Instr.2010, 867049 (2010).

2009

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

2008

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

2007

A. Bjeoumikhov, “Observation of peculiarities in angular distributions of x-ray radiation after propagation through polycapillary structures,” Phys. Lett. A360, 405–410 (2007).
[CrossRef]

2006

L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
[CrossRef]

2005

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectroc. Acta Pt. B-Atom. Spectr.60, 41–47 (2005).
[CrossRef]

V. Chernik and A. Romanov, “X-ray polycapillary imaging microscopy,” Proc. SPIE5943, 158–166 (2005).

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

2004

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

2003

S. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys.-Usp.46, 1053–1075 (2003).
[CrossRef]

1998

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
[CrossRef]

1996

N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
[CrossRef]

A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt.35, 4420–4425 (1996).
[CrossRef] [PubMed]

1995

S. B. Dabagov, M. A. Kumakhov, and S. V. Nikitina, “On the interference of X-rays in multiple reflection optics,” Phys. Lett. A203, 279–282 (1995).
[CrossRef]

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

1994

S. A. Hoffman, D. J. Thiel, and D. H. Bilderback, “Developments in tapered monocapillary and polycapillary glass X-ray concentrators,” Nucl. Instrum. Meth. A347, 384–389 (1994).
[CrossRef]

1990

M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B48, 283–286 (1990).
[CrossRef]

M. A. Kumakhov and F. F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep.191, 289–350 (1990).
[CrossRef]

1987

1978

1968

J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. ASA1, 172–173 (1968).

1952

D. Sayre, “Some implications of a theorem due to Shannon,” Acta Cryst.5, 843–843 (1952).
[CrossRef]

Ables, J. G.

J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. ASA1, 172–173 (1968).

Adams, F.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
[CrossRef]

Anastasio, M. A.

Bellatreccia, F.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

Berger, A.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Bilderback, D. H.

S. A. Hoffman, D. J. Thiel, and D. H. Bilderback, “Developments in tapered monocapillary and polycapillary glass X-ray concentrators,” Nucl. Instrum. Meth. A347, 384–389 (1994).
[CrossRef]

Bjeoumikhov, A.

A. Bjeoumikhov, “Observation of peculiarities in angular distributions of x-ray radiation after propagation through polycapillary structures,” Phys. Lett. A360, 405–410 (2007).
[CrossRef]

Bonfigli, F.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

Brenker, F.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

Bukreeva, I.

L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
[CrossRef]

Bunk, O.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

Cannon, T. M.

Caro, L. D.

L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
[CrossRef]

Carpenter, D. A.

N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
[CrossRef]

Cedola, A.

L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
[CrossRef]

Chen, Y.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Chernik, V.

V. Chernik and A. Romanov, “X-ray polycapillary imaging microscopy,” Proc. SPIE5943, 158–166 (2005).

Dabagov, S.

S. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys.-Usp.46, 1053–1075 (2003).
[CrossRef]

Dabagov, S. B.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

S. B. Dabagov, M. A. Kumakhov, and S. V. Nikitina, “On the interference of X-rays in multiple reflection optics,” Phys. Lett. A203, 279–282 (1995).
[CrossRef]

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

Dierolf, M.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

Ding, X.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Du, X.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Engström, P.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
[CrossRef]

Falkenberg, G.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

Fedorchuk, R. V.

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

Fenimore, E. E.

Fuhse, C.

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

Gabel, K.

Gao, N.

N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
[CrossRef]

Giannini, C.

L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
[CrossRef]

Gibson, W. M.

N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
[CrossRef]

Haboub, A.

A. Haboub, A. A. MacDowell, S. Marchesini, and D. Y. Parkinson, “Coded aperture imaging for fluorescent x-rays,” Proc. SPIE8502, 850209 (2012).
[CrossRef]

Hampai, D.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

Hoffman, S. A.

S. A. Hoffman, D. J. Thiel, and D. H. Bilderback, “Developments in tapered monocapillary and polycapillary glass X-ray concentrators,” Nucl. Instrum. Meth. A347, 384–389 (1994).
[CrossRef]

Huang, W.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Janssens, K.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
[CrossRef]

Jarre, A.

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

Jia, Q.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Kanngiesser, B.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectroc. Acta Pt. B-Atom. Spectr.60, 41–47 (2005).
[CrossRef]

Kersten, M.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

Komarov, F. F.

M. A. Kumakhov and F. F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep.191, 289–350 (1990).
[CrossRef]

Kuehn, A.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Kumakhov, M.

M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B48, 283–286 (1990).
[CrossRef]

Kumakhov, M. A.

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

S. B. Dabagov, M. A. Kumakhov, and S. V. Nikitina, “On the interference of X-rays in multiple reflection optics,” Phys. Lett. A203, 279–282 (1995).
[CrossRef]

M. A. Kumakhov and F. F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep.191, 289–350 (1990).
[CrossRef]

Lagomarsino, S.

L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
[CrossRef]

Li, G.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Liu, Z.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Ma, Y.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

MacDonald, C.

C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray Optics and Instr.2010, 867049 (2010).

MacDowell, A. A.

A. Haboub, A. A. MacDowell, S. Marchesini, and D. Y. Parkinson, “Coded aperture imaging for fluorescent x-rays,” Proc. SPIE8502, 850209 (2012).
[CrossRef]

Magi, M.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

Malzer, W.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectroc. Acta Pt. B-Atom. Spectr.60, 41–47 (2005).
[CrossRef]

Marchesini, S.

A. Haboub, A. A. MacDowell, S. Marchesini, and D. Y. Parkinson, “Coded aperture imaging for fluorescent x-rays,” Proc. SPIE8502, 850209 (2012).
[CrossRef]

Menzel, A.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

Montereali, R. M.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

Murashova, V. A.

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

Nikitina, S. V.

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

S. B. Dabagov, M. A. Kumakhov, and S. V. Nikitina, “On the interference of X-rays in multiple reflection optics,” Phys. Lett. A203, 279–282 (1995).
[CrossRef]

Nugent, K. A.

Ollinger, C.

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

Ordavo, I.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Ostermann, M.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Panne, U.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Parkinson, D. Y.

A. Haboub, A. A. MacDowell, S. Marchesini, and D. Y. Parkinson, “Coded aperture imaging for fluorescent x-rays,” Proc. SPIE8502, 850209 (2012).
[CrossRef]

Peele, A. G.

Pfeiffer, F.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

Ponomarev, I. Y.

N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
[CrossRef]

Radtke, M.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Reiche, I.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectroc. Acta Pt. B-Atom. Spectr.60, 41–47 (2005).
[CrossRef]

Reinholz, U.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Richardson, M. C.

Rickers, K.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

Riesemeier, H.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Rindby, A.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
[CrossRef]

Rode, A. V.

Rodriguez, A.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectroc. Acta Pt. B-Atom. Spectr.60, 41–47 (2005).
[CrossRef]

Romanov, A.

V. Chernik and A. Romanov, “X-ray polycapillary imaging microscopy,” Proc. SPIE5943, 158–166 (2005).

Salditt, T.

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

Sayre, D.

D. Sayre, “Some implications of a theorem due to Shannon,” Acta Cryst.5, 843–843 (1952).
[CrossRef]

Scharf, O.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

Schoonover, R. W.

Seeger, J.

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

Siegmund, W.

Somogyi, A.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

Strack, R.

Sun, T.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Thibault, P.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

Thiel, D. J.

S. A. Hoffman, D. J. Thiel, and D. H. Bilderback, “Developments in tapered monocapillary and polycapillary glass X-ray concentrators,” Nucl. Instrum. Meth. A347, 384–389 (1994).
[CrossRef]

Tucoulou, R.

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

Vekemans, B.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

Ventura, G. D.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

Vincze, L.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
[CrossRef]

Xiao, Q. F.

N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
[CrossRef]

Xu, Q.

Yakimenko, M. N.

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

Yuan, Q.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Zhang, M.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Zhang, Z.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Zhu, P.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

Zysk, A. M.

Acta Cryst.

D. Sayre, “Some implications of a theorem due to Shannon,” Acta Cryst.5, 843–843 (1952).
[CrossRef]

Anal. Chem.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem.76, 6786–6791 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence,” Appl. Phys. Lett.69, 1529–1531 (1996).
[CrossRef]

Europhys. Lett.

D. Hampai, S. B. Dabagov, G. D. Ventura, F. Bellatreccia, M. Magi, F. Bonfigli, and R. M. Montereali, “High-resolution x-ray imaging by polycapillary optics and lithium fluoride detectors combination,” Europhys. Lett.96, 60010 (2011).
[CrossRef]

J. Anal. At. Spectrom.

A. Kuehn, O. Scharf, I. Ordavo, H. Riesemeier, U. Reinholz, M. Radtke, A. Berger, M. Ostermann, and U. Panne, “Pushing the limits for fast spatially resolved elemental distribution patterns,” J. Anal. At. Spectrom.26, 1986–1989 (2011).
[CrossRef]

J. Synchrotron Radiat.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat.16, 116–118 (2009).
[CrossRef]

S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, “Observation of Interference Effects at the Focus of an X-ray Lens,” J. Synchrotron Radiat.2, 132–135 (1995).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. A

S. A. Hoffman, D. J. Thiel, and D. H. Bilderback, “Developments in tapered monocapillary and polycapillary glass X-ray concentrators,” Nucl. Instrum. Meth. A347, 384–389 (1994).
[CrossRef]

Nucl. Instrum. Methods B

M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B48, 283–286 (1990).
[CrossRef]

Opt. Commun.

L. D. Caro, C. Giannini, A. Cedola, S. Lagomarsino, and I. Bukreeva, “X-ray point- and line-projection microscopy and diffraction,” Opt. Commun.265, 8–28 (2006).
[CrossRef]

Opt. Express

Phys. Lett. A

A. Bjeoumikhov, “Observation of peculiarities in angular distributions of x-ray radiation after propagation through polycapillary structures,” Phys. Lett. A360, 405–410 (2007).
[CrossRef]

S. B. Dabagov, M. A. Kumakhov, and S. V. Nikitina, “On the interference of X-rays in multiple reflection optics,” Phys. Lett. A203, 279–282 (1995).
[CrossRef]

Phys. Rep.

M. A. Kumakhov and F. F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep.191, 289–350 (1990).
[CrossRef]

Phys. Rev. Lett.

A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett.94, 074801 (2005).
[CrossRef] [PubMed]

Phys.-Usp.

S. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys.-Usp.46, 1053–1075 (2003).
[CrossRef]

Proc. ASA

J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. ASA1, 172–173 (1968).

Proc. SPIE

A. Haboub, A. A. MacDowell, S. Marchesini, and D. Y. Parkinson, “Coded aperture imaging for fluorescent x-rays,” Proc. SPIE8502, 850209 (2012).
[CrossRef]

V. Chernik and A. Romanov, “X-ray polycapillary imaging microscopy,” Proc. SPIE5943, 158–166 (2005).

Rev. Sci. Instr.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr.69, 3494–3503 (1998).
[CrossRef]

Science

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008).
[CrossRef] [PubMed]

Spectroc. Acta Pt. B-Atom. Spectr.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectroc. Acta Pt. B-Atom. Spectr.60, 41–47 (2005).
[CrossRef]

X-ray Optics and Instr.

C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray Optics and Instr.2010, 867049 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of an experiment for x-ray imaging inside the focal spot of a polycapillary optics using the coded aperture principle. (a) The internal structure of the polycapillary optics is treated as a coding aperture. Projection of the object is decoded from a magnified x-ray image of the polycapillary structure which is specifically sharpened by the object placed at the focal spot. (b) Optical microscope image of the exit surface of the lens. The marked hexagon corresponds to a single capillary bundle. (c) Transmission scan of the focal spot with a 5 μm pinhole. Points show a profile through the center and the line is a Gaussian fit with a FWHM of 40 μm.

Fig. 2
Fig. 2

X-ray imaging of simple objects placed inside the focal spot. (a) Left: image recorded without object (I0). Middle: data for a 5 μm pinhole. Right: data for a 25 μm wire. Pinhole and wire images were divided by I0. Insets at the bottom show zooms of the data. The zoom of I0 was flattened for a better comparison. The upper insets show projection-like images obtained for objects displaced from focal spot along z axis. (b) Corresponding logarithms of the Fourier transform intensities. Numeric labels provide spatial frequencies in the focal plane.

Fig. 3
Fig. 3

Reconstruction of coded aperture images recorded for golden grids with different meshes placed inside the focal spot of a polycapillary optics. (a) Reconstruction from a single image. Left: pitch 42 μm, hole 37 μm. Right: pitch 25 μm, hole 19 μm. (b) Corresponding reconstructions from a set of images. The number of images and their acquisition times are given at the bottom of the plots.

Fig. 4
Fig. 4

Comparison of coded aperture imaging with a standard x-ray transmission scan and a projection image. (a) Reconstruction from a set of coded aperture images. The line plot is a profile at the position marked with a dashed line. (b) Transmission scan for d = f. (c) Projection image (I/I0) for d = f + 20mm. (d) Optical microscope image of the object.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) 1 D 2 T ( x x s D d + x s ) G ( x M x s D ) S ( x s ) d x s .
I ( x ) 1 D 2 [ T ( x 1 M ) G ( x D ) ] * S ( x M ) .
U ( x ) = 1 [ [ I 0 I ] [ I P ] ] .
V ( x , y ) = i , j U ( x + i Δ x , y + j Δ y ) ,

Metrics