Abstract

In this paper, we experimentally demonstrate a high-speed free-space reconfigurable card-to-card optical interconnect architecture employing MEMS-based steering mirror arrays for simple and efficient link selection. A printed-circuit-board (PCB) based interconnect module is developed and 3 × 10 Gb/s reconfigurable card-to-card optical interconnect with a bit-error-rate (BER) of ~10−6 for up to 30 cm is realized using a 250 μm pitch-size micro-lens array. In addition, due to the usage of MEMS steering-mirrors, larger lenses can be employed at the receiver side for collecting stronger optical signal power to increase the achievable interconnect range or to improve the BER performance. Experimental results show that with 1-mm diameter lenses the interconnect distance can exceed 80 cm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Borkar, “Design perspectives on 22 nm CMOS and beyond,” in Proceedings of 46th ACM/IEEE Design Automation Conference (San Francisco, California, 2009), 93–94.
  2. S. E. Thompson and S. Parthasarathy, “Moore’s law: the future of Si microelectronics,” Mater. Today9(6), 20–25 (2006).
    [CrossRef]
  3. X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
    [CrossRef]
  4. S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
    [CrossRef]
  5. D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).
  6. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express20(11), 12035–12039 (2012).
    [CrossRef] [PubMed]
  7. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
    [CrossRef]
  8. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005).
    [CrossRef]
  9. “Luxtera’s silicon photonics technology enables 100Gbps data center interconnects,” http://www.luxtera.com/20100601225/luxtera-advances-optical-technology-to-support-100gbps-interconnects-for-datacenters.html .
  10. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol.30(4), 448–457 (2012).
    [CrossRef]
  11. L. A. Buckman-Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, and D. W. Dolfi, “Parallel optical interconnects >100 Gb/s,” J. Lightwave Technol.22(9), 2055–2063 (2004).
    [CrossRef]
  12. D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritter, J. Jewell, L. A. Graham, K. Schr¨odinger, A. Schild, and H.-M. Rein, “120-Gb/s VCSEL-based parallel-optical interconnect and custom 120- Gb/s testing station,” J. Lightwave Technol.22(9), 2200–2212 (2004).
    [CrossRef]
  13. F. E. Doany, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. Baks, C. Jahnes, F. Libsch, and C. L. Schow, “Terabit/sec VCSEL-based parallel optical module based on holey CMOS transceiver IC” in Proceedingsof Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC,Los Angeles, California, 2012), PDP5D.9.
  14. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
    [CrossRef]
  15. C. L. Schow, F. E. Doany, C. W. Baks, Y. H. Kwark, D. M. Kuchta, and J. A. Kash, “A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates,” J. Lightwave Technol.27(7), 915–929 (2009).
    [CrossRef]
  16. C. J. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free space adaptive optical interconnect at 1.25 Gb/s with beam steering using a ferroelectric liquid-crystal SLM,” J. Lightwave Technol.24(5), 1989–1997 (2006).
    [CrossRef]
  17. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
    [CrossRef]
  18. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express14(15), 6823–6836 (2006).
    [CrossRef] [PubMed]
  19. L. C. Andrews and R. L. Phillips, inLaser Beam Propagation through Random Media, SPIE Optical Engineering Press, Bellingham, Washington, 1998.
  20. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron.12(4), 544–554 (2006).
    [CrossRef]

2012

2011

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

2010

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

2009

2008

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

2006

2005

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005).
[CrossRef]

2004

2000

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
[CrossRef]

Alameh, K. E.

Aljada, M.

Assefa, S.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

Baks, C.

Baks, C. W.

Benner, A. F.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005).
[CrossRef]

Berger, C.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Beyeler, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Brown, J. S.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Buckman-Windover, L. A.

Chung, I. S.

Cunningham, J. E.

Dangel, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Dellmann, L.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Doany, F. E.

Dolfi, D. W.

Flower, G. M.

Giboney, K. S.

Gmur, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Graham, L. A.

Green, W. M. J.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

Grenouillet, L.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Grot, A.

Gruhlke, R. W.

Habib, K. Z.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Hamelin, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Han, J.-P.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Haymes, C.

Henderson, C. J.

Hook, T. B.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Horst, F.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Ichikawa, M.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

Ignatowski, M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005).
[CrossRef]

Ishikawa, M.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
[CrossRef]

Jewell, J.

John, R.

Kash, J. A.

C. L. Schow, F. E. Doany, C. W. Baks, Y. H. Kwark, D. M. Kuchta, and J. A. Kash, “A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates,” J. Lightwave Technol.27(7), 915–929 (2009).
[CrossRef]

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005).
[CrossRef]

Kobayashi, Y.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
[CrossRef]

Kopp, C.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Krishnamoorthy, A. V.

Kucharski, D.

Kuchta, D. M.

Kumar, R.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Kwark, Y. H.

Lamprecht, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Law, B.

Lee, H.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Lee, J.-H.

Lee, Y. T.

Leyva, D. G.

Li, G.

Lin, C.-K.

Liu, L.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Lockwood, D. J.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

Luo, Y.

Mahalingam, U.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Mandorlo, F.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

McArdle, N.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
[CrossRef]

Mekis, A.

Mirkarimi, L. W.

Mizuochi, T.

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron.12(4), 544–554 (2006).
[CrossRef]

Morf, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Morthier, G.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Na, M.-H.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Naruse, M.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
[CrossRef]

Offrein, B. J.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Oggioni, S.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Olsen, C. M.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Pan, L.-H.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Park, J.-E.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Parthasarathy, S.

S. E. Thompson and S. Parthasarathy, “Moore’s law: the future of Si microelectronics,” Mater. Today9(6), 20–25 (2006).
[CrossRef]

Pepeljugoski, P.

Raj, K.

Rankin, G.

Raz, O.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Regreny, P.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Rein, H.-M.

Rim, K.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Ritter, M.

Ritther, M. B.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005).
[CrossRef]

Roelkens, G.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Rogers, D.

Romeo, P. R.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Rosenau, S. A.

Rylyakov, A. V.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

Satadru, S.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Schaub, J.

Schild, A.

Schow, C. L.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

C. L. Schow, F. E. Doany, C. W. Baks, Y. H. Kwark, D. M. Kuchta, and J. A. Kash, “A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates,” J. Lightwave Technol.27(7), 915–929 (2009).
[CrossRef]

Schr¨odinger, K.

Schuster, C.

Selvaraja, S. K.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Shan, L.

Shimizu, T.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Shubin, I.

Simon, J. N.

Spreafico, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

Spuesens, T.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Su, T.-C.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Tan, M. R. T.

Tandon, A.

Taubenblatt, M. A.

Tekleab, D. G.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Thacker, H.

Thompson, S. E.

S. E. Thompson and S. Parthasarathy, “Moore’s law: the future of Si microelectronics,” Mater. Today9(6), 20–25 (2006).
[CrossRef]

Thourhout, D. V.

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

Toyoda, H.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
[CrossRef]

Tsybeskov, L.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

Vlasov, Y. A.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

Wilkinson, T. D.

Xia, F.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

Xia, H.

Yao, J.

Yuan, X.

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

Zheng, X.

IBM J. Res. Develop.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010).
[CrossRef]

D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron.12(4), 544–554 (2006).
[CrossRef]

IEEE Trans. Adv. Packag.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008).
[CrossRef]

IEEE. Trans. Electron Devices

X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011).
[CrossRef]

J. Lightwave Technol.

Mater. Today

S. E. Thompson and S. Parthasarathy, “Moore’s law: the future of Si microelectronics,” Mater. Today9(6), 20–25 (2006).
[CrossRef]

Opt. Express

Proc. IEEE

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000).
[CrossRef]

Other

F. E. Doany, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. Baks, C. Jahnes, F. Libsch, and C. L. Schow, “Terabit/sec VCSEL-based parallel optical module based on holey CMOS transceiver IC” in Proceedingsof Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC,Los Angeles, California, 2012), PDP5D.9.

S. Borkar, “Design perspectives on 22 nm CMOS and beyond,” in Proceedings of 46th ACM/IEEE Design Automation Conference (San Francisco, California, 2009), 93–94.

“Luxtera’s silicon photonics technology enables 100Gbps data center interconnects,” http://www.luxtera.com/20100601225/luxtera-advances-optical-technology-to-support-100gbps-interconnects-for-datacenters.html .

L. C. Andrews and R. L. Phillips, inLaser Beam Propagation through Random Media, SPIE Optical Engineering Press, Bellingham, Washington, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Architecture of the proposed reconfigurable free-space card-to-card optical interconnect.

Fig. 2
Fig. 2

Experimental setup (not to scale) for demonstrating the concept of free-space reconfigurable card-to-card optical interconnects.

Fig. 3
Fig. 3

BER of three working channels versus the horizontal distance between transmitter and receiver PCBs. Bit rate = 10 Gb/s, MEMS mirror spacing at the receiver side = 2.5 mm and VCSEL transmission power = 2 mW.

Fig. 4
Fig. 4

BER versus received power for the three optical interconnects. The horizontal distance between the transmitter and receiver modules is (a) 20 cm and (b) 30 cm. Bit rate = 10 Gb/s.

Fig. 5
Fig. 5

BER versus the horizontal distance between the transmitter and receiver PCBs. Channel 1, 2, and 4 corresponds to interconnecting VCSEL 1, 2, and 4 to PD 2, 4, 1, respectively. Bit rate = 10 Gb/s.

Fig. 6
Fig. 6

BER versus the horizontal distance between the transmitter and receiver PCBs. Bit rate = 10 Gb/s, radiation power from each VCSEL element = 2 mW, and diameter of lenses at the receiver side = 1 mm.

Fig. 7
Fig. 7

BER versus received power for the three optical interconnects. The horizontal distance between the transmitter and receiver modules is 80 cm. Bit rate = 10 Gb/s.

Fig. 8
Fig. 8

Experimental setup (not to scale) for demonstrating the card-to-card reconfigurability of the proposed optical interconnect architecture.

Tables (1)

Tables Icon

Table 1 Measured BER for three working channels

Metrics