Abstract

We present a high-speed optical beamsteering system based on an 8x8 MEMS phased array. The system incorporates an in situ interferometer that provides a real-time, dynamic measure of the phase of each mirror in the array during beamsteering. A closed-loop phase-control algorithm results in <π/100 mirror phase accuracy and far field beam steering is shown. Stroboscopic measurement capabilities are demonstrated which allow us to show feedforward control to eliminate micromirror ringing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
    [CrossRef]
  2. A. C. Clay, S.-C. Wooh, L. Azar, and J.-Y. Wang, “Experimental study of phased array beam steering characteristics,” J. Nondestruct. Evaluat.18(2), 59–71 (1999).
    [CrossRef]
  3. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett.21(9), 689–691 (1996).
    [CrossRef] [PubMed]
  4. B.-W. Yoo, M. Megens, T. K. Chan, T. Sun, W. Yang, C. Chang-Hasnain, D. A. Horsley, and M. C. Wu, “Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering,” submitted to Opt. Express.
  5. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010).
    [CrossRef] [PubMed]
  6. L. L. Chu and Y. B. Gianchandani, “A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing,” J. Micromech. Microeng.13(2), 279–285 (2003).
    [CrossRef]
  7. J. Dong and P. M. Ferreira, “Simultaneous actuation and displacement sensing for electrostatic drives,” J. Micromech. Microeng.18(3), 035011 (2008).
    [CrossRef]
  8. N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” J. Dyn. Syst. Meas. Control112(1), 76–82 (1990).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill Science/Engineering/Math, 1996), Chap. 4.
  10. T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” Proc. SPIE5895, 58950Q, 58950Q–9 (2005).
    [CrossRef]

2010

2009

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

2008

J. Dong and P. M. Ferreira, “Simultaneous actuation and displacement sensing for electrostatic drives,” J. Micromech. Microeng.18(3), 035011 (2008).
[CrossRef]

2005

T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” Proc. SPIE5895, 58950Q, 58950Q–9 (2005).
[CrossRef]

2003

L. L. Chu and Y. B. Gianchandani, “A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing,” J. Micromech. Microeng.13(2), 279–285 (2003).
[CrossRef]

1999

A. C. Clay, S.-C. Wooh, L. Azar, and J.-Y. Wang, “Experimental study of phased array beam steering characteristics,” J. Nondestruct. Evaluat.18(2), 59–71 (1999).
[CrossRef]

1996

1990

N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” J. Dyn. Syst. Meas. Control112(1), 76–82 (1990).
[CrossRef]

Azar, L.

A. C. Clay, S.-C. Wooh, L. Azar, and J.-Y. Wang, “Experimental study of phased array beam steering characteristics,” J. Nondestruct. Evaluat.18(2), 59–71 (1999).
[CrossRef]

Bifano, T. G.

T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” Proc. SPIE5895, 58950Q, 58950Q–9 (2005).
[CrossRef]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Chang-Hasnain, C. J.

Chu, L. L.

L. L. Chu and Y. B. Gianchandani, “A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing,” J. Micromech. Microeng.13(2), 279–285 (2003).
[CrossRef]

Clay, A. C.

A. C. Clay, S.-C. Wooh, L. Azar, and J.-Y. Wang, “Experimental study of phased array beam steering characteristics,” J. Nondestruct. Evaluat.18(2), 59–71 (1999).
[CrossRef]

Dong, J.

J. Dong and P. M. Ferreira, “Simultaneous actuation and displacement sensing for electrostatic drives,” J. Micromech. Microeng.18(3), 035011 (2008).
[CrossRef]

Dorschner, T. A.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Ferreira, P. M.

J. Dong and P. M. Ferreira, “Simultaneous actuation and displacement sensing for electrostatic drives,” J. Micromech. Microeng.18(3), 035011 (2008).
[CrossRef]

Friedman, L. J.

Gianchandani, Y. B.

L. L. Chu and Y. B. Gianchandani, “A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing,” J. Micromech. Microeng.13(2), 279–285 (2003).
[CrossRef]

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Hobbs, D. S.

Karagodsky, V.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Resler, D. P.

Sedgwick, F. G.

Seering, W. P.

N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” J. Dyn. Syst. Meas. Control112(1), 76–82 (1990).
[CrossRef]

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Sharp, R. C.

Singer, N. C.

N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” J. Dyn. Syst. Meas. Control112(1), 76–82 (1990).
[CrossRef]

Stewart, J. B.

T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” Proc. SPIE5895, 58950Q, 58950Q–9 (2005).
[CrossRef]

Wang, J.-Y.

A. C. Clay, S.-C. Wooh, L. Azar, and J.-Y. Wang, “Experimental study of phased array beam steering characteristics,” J. Nondestruct. Evaluat.18(2), 59–71 (1999).
[CrossRef]

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Wooh, S.-C.

A. C. Clay, S.-C. Wooh, L. Azar, and J.-Y. Wang, “Experimental study of phased array beam steering characteristics,” J. Nondestruct. Evaluat.18(2), 59–71 (1999).
[CrossRef]

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

J. Dyn. Syst. Meas. Control

N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” J. Dyn. Syst. Meas. Control112(1), 76–82 (1990).
[CrossRef]

J. Micromech. Microeng.

L. L. Chu and Y. B. Gianchandani, “A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing,” J. Micromech. Microeng.13(2), 279–285 (2003).
[CrossRef]

J. Dong and P. M. Ferreira, “Simultaneous actuation and displacement sensing for electrostatic drives,” J. Micromech. Microeng.18(3), 035011 (2008).
[CrossRef]

J. Nondestruct. Evaluat.

A. C. Clay, S.-C. Wooh, L. Azar, and J.-Y. Wang, “Experimental study of phased array beam steering characteristics,” J. Nondestruct. Evaluat.18(2), 59–71 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Proc. SPIE

T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” Proc. SPIE5895, 58950Q, 58950Q–9 (2005).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill Science/Engineering/Math, 1996), Chap. 4.

B.-W. Yoo, M. Megens, T. K. Chan, T. Sun, W. Yang, C. Chang-Hasnain, D. A. Horsley, and M. C. Wu, “Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering,” submitted to Opt. Express.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of the optical system. A series of polarization beamsplitters and half wave plates form the two arms of an interferometer. Two lenses create a collimated illumination spot that fits the MEMS device. The measurement arm of the interferometer includes a 4f imaging system to preserve the imaging resolution and keep the imaging optics from blocking the steered device output. The output is extracted at the top right of the diagram, and magnified with a confocal lens with smaller focal length.

Fig. 2
Fig. 2

Closed loop feedback control diagram. Control voltages are defined for phase setpoints with feedback control to compensate for long term drift.

Fig. 3
Fig. 3

(a) Raw interferogram image of the MEMS phased array and (b) the calculated phase map with the background subtracted and 18 V applied to nine adjacent pixels.

Fig. 4
Fig. 4

Measured reflected phase shift from an actuated mirror.

Fig. 5
Fig. 5

Transient response of a mirror actuated with a voltage step and with a shaped signal to eliminate harmonic oscillations.

Fig. 6
Fig. 6

Demonstration of phase control of a single mirror with a 1.0 π phase shift target. The plot shows three periods with closed-loop phase control on, off and on, respectively. The temperature is switched between 21°C and 17°C to induce a mirror response drift in the first two periods.

Fig. 7
Fig. 7

(a) Target and (b) measured phase patterns. The measured phase pattern was achieved using closed loop feedback.

Fig. 8
Fig. 8

Calculated and measured far field patterns of reflected light from the phased array. Calculated reflection from (a) a flat array, (b) a diagonal phase gradient and (c) their cross section plotted together. Measured reflection from (d) a flat array, (e) a diagonal phase gradient and (f) their cross section plotted together.

Fig. 9
Fig. 9

16 camera images of diffracted beams superimposed onto one image, with the 0th order beam subtracted. The red x’s indicate the centroid of each beam to show the pointing error.

Fig. 10
Fig. 10

(a) Transient response of the far field pattern when a checkerboard pattern is applied with a square wave. The blue and red boxes in the far field pattern indicate the integration areas from which we calculate the intensity levels. Shown here are the far field patterns at (b) 10 µs and (c) 30 µs.

Metrics