Abstract

We show how disordered media allow to increase the local degree of polarization (DOP) of an arbitrary (partial) polarized incident beam. The role of cross-scattering coefficients is emphasized, together with the probability density functions (PDF) of the scattering DOP. The average DOP of scattering is calculated versus the incident illumination DOP.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  2. C. Brosseau, Fundamentals of Polarized Light - A Statistical Optics Approach (Wiley, 1998).
  3. J. W. Goodman, Statistical Optics (Wiley- Interscience, 2000).
  4. E. Jakeman and K. D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor and Francis Group, 2006).
  5. E. Wolf, Introduction to the Theory of coherence and polarization of light, Cambridge University Press, 2007).
  6. S. G. Hanson and H. T. Yura, “Statistics of spatially integrated speckle intensity difference,” J. Opt. Soc. Am. A26(2), 371–375 (2009).
    [CrossRef] [PubMed]
  7. M. Zerrad, J. Sorrentini, G. Soriano, and C. Amra, “Gradual loss of polarization in light scattered from rough surfaces: electromagnetic prediction,” Opt. Express18(15), 15832–15843 (2010).
    [CrossRef] [PubMed]
  8. J. Broky and A. Dogariu, “Complex degree of mutual polarization in randomly scattered fields,” Opt. Express18(19), 20105–20113 (2010).
    [CrossRef] [PubMed]
  9. R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun.123(4-6), 443–448 (1996).
    [CrossRef]
  10. P. Réfrégier and A. Luis, “Irreversible effects of random unitary transformations on coherence properties of partially polarized electromagnetic fields,” J. Opt. Soc. Am. A25(11), 2749–2757 (2008).
    [CrossRef] [PubMed]
  11. J. Sorrentini, M. Zerrad, G. Soriano, and C. Amra, “Enpolarization of light by scattering media,” Opt. Express19(22), 21313–21320 (2011).
    [CrossRef] [PubMed]
  12. P. Réfrégier, M. Zerrad, and C. Amra, “Coherence and polarization properties in speckle of totally depolarized light scattered by totally depolarizing media,” Opt. Lett.37(11), 2055–2057 (2012).
    [CrossRef] [PubMed]
  13. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, “Effects of coherence on the degree of polarization in a Young interference pattern,” Opt. Lett.31(6), 688–690 (2006).
    [CrossRef] [PubMed]
  14. C. Amra, C. Grèzes-Besset, and L. Bruel, “Comparison of surface and bulk scattering in optical multilayers,” Appl. Opt.32(28), 5492–5503 (1993).
    [CrossRef] [PubMed]
  15. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express13(16), 6051–6060 (2005).
    [CrossRef] [PubMed]
  16. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Correlation matrix of a completely polarized, statistically stationary electromagnetic field,” Opt. Lett.29(13), 1536–1538 (2004).
    [CrossRef] [PubMed]
  17. D. L. Colton and R. Kress, Integral Equations methods in Scattering Theory (Wiley, 1983).
  18. L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of electromagnetic waves: numerical simulations (Wiley-Interscience, 2001).
  19. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  20. J. Sorrentini, M. Zerrad, and C. Amra, “Statistical signatures of random media and their correlation to polarization properties,” Opt. Lett.34(16), 2429–2431 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

2010 (2)

2009 (2)

2008 (1)

2006 (1)

2005 (1)

2004 (1)

1996 (1)

R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun.123(4-6), 443–448 (1996).
[CrossRef]

1993 (1)

Amra, C.

Barakat, R.

R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun.123(4-6), 443–448 (1996).
[CrossRef]

Borghi, R.

Broky, J.

Bruel, L.

Dogariu, A.

Ellis, J.

Gori, F.

Goudail, F.

Grèzes-Besset, C.

Hanson, S. G.

Luis, A.

Ponomarenko, S.

Réfrégier, P.

Santarsiero, M.

Soriano, G.

Sorrentini, J.

Wolf, E.

Yura, H. T.

Zerrad, M.

Appl. Opt. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun.123(4-6), 443–448 (1996).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (8)

D. L. Colton and R. Kress, Integral Equations methods in Scattering Theory (Wiley, 1983).

L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of electromagnetic waves: numerical simulations (Wiley-Interscience, 2001).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

C. Brosseau, Fundamentals of Polarized Light - A Statistical Optics Approach (Wiley, 1998).

J. W. Goodman, Statistical Optics (Wiley- Interscience, 2000).

E. Jakeman and K. D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor and Francis Group, 2006).

E. Wolf, Introduction to the Theory of coherence and polarization of light, Cambridge University Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Speckle intensity patterns of scattering versus the incident DOP0.

Fig. 2
Fig. 2

Local degree of polarization (DOP) of the speckle patterns given in Fig. 1 versus the incident DOP0. From left to right, the incident DOP0 increases from 0 to 1.

Fig. 3
Fig. 3

Polarization states of the scattered light on the Poincaré spheres (bottom figures) and their equatorial sections (top figures). From left to right, the incident DOP0 increases from 0 to 1. The grey level is connected with the scattered DOP which measures the distance to the center of the sphere or disk.

Fig. 4
Fig. 4

Variations of the PDF laws of the scattered DOP for different incident DOP0.

Fig. 5
Fig. 5

Average of polarization degree of the incident light (left) and of the scattered light (right) versus the parameters that control the incident polarization (correlation μ0 and polarization ratio β0).

Fig. 6
Fig. 6

Ratio of scattered DOP to incident DOP0, versus the incident polarization parameters (correlation μ0 and polarization ratio β0).

Fig. 7
Fig. 7

Average scattered DOP plotted versus incident DOP0.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

J 0 =( E 0S E ¯ 0S E 0S E ¯ 0P E ¯ 0S E 0P E 0P E ¯ 0P )
DO P 0 2 =14 det[ J 0 ] { tr[ J 0 ] } 2
DO P 0 2 =14 β 0 [ 1+ β 0 ] 2 [ 1 | μ 0 | 2 ]
β 0 = | E 0P | 2 | E 0S | 2 and μ 0 = E 0S E ¯ 0P | E 0S | 2 | E 0P | 2
DOP=1β=0or 1 β =0or| μ |=1
DOP=0β=1andμ=0
μ0DOP0
μ=0DOP= 1β 1+β 0unlessβ=1
μ=1DOP=1
β=0or 1 β =0DOP=1
β=1DOP=| μ |
μ 0 = μ 0 ( DO P 0 , β 0 )
E ={ E S E P =( ν SS ν PS ν SP ν PP ) E 0 ={ ν SS E 0S + ν PS E 0P ν SP E 0S + ν PP E 0P
J=( E S E S ¯ E S E P ¯ E ¯ S E P E P E P ¯ )
DO P 2 =14 det[ J ] { tr[ J ] } 2 =14 β [ 1+β ] 2 [ 1 | μ | 2 ]
β= | E P | 2 | E S | 2 and μ= E S E P ¯ | E S | 2 | E P | 2
β( μ 0 , β 0 )= | ν SP | 2 + β 0 | ν PP | 2 +2 β 0 e{ μ 0 ν SP v PP ¯ } | ν SS | 2 + β 0 | ν PS | 2 +2 β 0 e{ μ 0 ν SS ν PS ¯ }
μ( μ 0 , β 0 )= 1 β ν SS ν SP ¯ + β 0 ν PS ν PP ¯ + β 0 { μ 0 ν SS ν PP ¯ + μ 0 ¯ ν PS ν SP ¯ } | ν SS | 2 + β 0 | ν PS | 2 +2 β 0 e{ μ 0 ν SS ν PS ¯ }
ν SP = ν PS =0| μ |=| μ 0 | and β= β 0 | ν PP | 2 | ν SS | 2
β 0 = 0 => μ=  ν SP / ν SS ¯ | ν SP / ν SS | => μ = 1  =>  DOP = 1
β= | ν SP | 2 + | ν PP | 2 | ν SS | 2 + | ν PS | 2 and μ= 1 β ν SP ν SS ¯ + ν PP ν PS ¯ | ν SS | 2 + | ν PS | 2
DOP=1 ν SP ν PS = ν SS ν PP
σ =ksinθ( cosψ,sinψ )
ρ =ρ[ σ x /k, σ y /k,1 ( σ/k ) 2 ]

Metrics