Abstract

Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
    [CrossRef]
  3. G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
    [CrossRef]
  4. S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
    [CrossRef] [PubMed]
  5. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
    [CrossRef]
  6. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
    [CrossRef] [PubMed]
  7. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011).
    [CrossRef] [PubMed]
  8. T. Kouno, K. Kishino, and M. Sakai, “Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy,” IEEE J. Quantum Electron.47, 1565–1570 (2011).
    [CrossRef]
  9. C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C9, 596–600 (2012).
    [CrossRef]
  10. N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071–2073 (1996).
    [CrossRef]
  11. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
    [CrossRef]
  12. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
    [CrossRef]
  13. R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
    [CrossRef]
  14. C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
    [CrossRef]
  15. M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97, 061301 (2005).
    [CrossRef]
  16. J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A67, 023807 (2003).
    [CrossRef]
  17. M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
    [CrossRef]
  18. B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
    [CrossRef]
  19. C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive change and optical absorption in wurtzite InN and GaN: Full-band approach,” Phys. Rev. B81, 155206 (2010).
    [CrossRef]
  20. G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
    [CrossRef]
  21. E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997).
    [CrossRef]
  22. T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
    [CrossRef]
  23. T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A72, 063806 (2005).
    [CrossRef]
  24. A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
    [CrossRef]
  25. S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys.111, 071101 (2012).
    [CrossRef]
  26. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
    [CrossRef]
  27. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005).
    [CrossRef]
  28. D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
    [CrossRef] [PubMed]

2012

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C9, 596–600 (2012).
[CrossRef]

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys.111, 071101 (2012).
[CrossRef]

2011

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011).
[CrossRef] [PubMed]

T. Kouno, K. Kishino, and M. Sakai, “Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy,” IEEE J. Quantum Electron.47, 1565–1570 (2011).
[CrossRef]

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

2010

R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
[CrossRef]

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
[CrossRef]

C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive change and optical absorption in wurtzite InN and GaN: Full-band approach,” Phys. Rev. B81, 155206 (2010).
[CrossRef]

X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
[CrossRef]

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

2009

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
[CrossRef]

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

2007

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
[CrossRef]

2006

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
[CrossRef]

2005

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97, 061301 (2005).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A72, 063806 (2005).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005).
[CrossRef]

2004

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
[CrossRef] [PubMed]

2003

J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A67, 023807 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

1999

M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
[CrossRef]

1997

E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997).
[CrossRef]

1996

N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071–2073 (1996).
[CrossRef]

Al-Suleiman, M. A. M.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

Baldassarri Höger von Högersthal, G.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

Bergbauer, W.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Bergmann, M. J.

M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
[CrossRef]

Brandt, O.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

Bulutay, C.

C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive change and optical absorption in wurtzite InN and GaN: Full-band approach,” Phys. Rev. B81, 155206 (2010).
[CrossRef]

Butté, R.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Carlin, J.-F.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Casey, H. C.

M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
[CrossRef]

Chang, S.-W.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

Chen, R.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011).
[CrossRef] [PubMed]

Chen, X. J.

X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
[CrossRef]

Cheze, C.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Christiansen, S.

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C9, 596–600 (2012).
[CrossRef]

Christmann, G.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Chuang, S.-L.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

Cywinski, G.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Czekalla, C.

T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
[CrossRef]

DenBaars, S. P.

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
[CrossRef]

Dhanavantri, C.

B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
[CrossRef]

Di Carlo, A.

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

Dimitrakopulos, G. P.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Durand, C.

X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
[CrossRef]

R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
[CrossRef]

Everitt, H. O.

M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
[CrossRef]

Eymery, J.

R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
[CrossRef]

X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
[CrossRef]

Feltin, E.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Forchel, A.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Fuendling, S.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Gargas, D. J.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

Geelhaar, L.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
[CrossRef]

Goepfert, I. D.

E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997).
[CrossRef]

Grandjean, N.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071–2073 (1996).
[CrossRef]

Grieshaber, W.

E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997).
[CrossRef]

Grundmann, M.

T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A72, 063806 (2005).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
[CrossRef] [PubMed]

Grundy, A. J. D.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Haberer, E. D.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

Hirai, A.

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
[CrossRef]

Hu, E. L.

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
[CrossRef]

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

Hwang, J. S.

R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
[CrossRef]

Joshi, B. C

B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
[CrossRef]

Joshi, B. C.

B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
[CrossRef]

Kaidashev, E. M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
[CrossRef] [PubMed]

Karakostas, T.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Kavokin, A. V.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

Khegias, T.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
[CrossRef]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
[CrossRef]

Kishino, K.

T. Kouno, K. Kishino, and M. Sakai, “Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy,” IEEE J. Quantum Electron.47, 1565–1570 (2011).
[CrossRef]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
[CrossRef]

Koester, R.

R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
[CrossRef]

Komninou, P.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Kouno, T.

T. Kouno, K. Kishino, and M. Sakai, “Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy,” IEEE J. Quantum Electron.47, 1565–1570 (2011).
[CrossRef]

Krishna, S.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005).
[CrossRef]

Krysko, M.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Kudrawiec, R.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Kumar, D.

B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
[CrossRef]

Lagoudakis, P. G.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

Le Si Dang, D.

R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
[CrossRef]

Lee, K. H.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

Leroux, M.

N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071–2073 (1996).
[CrossRef]

Li, S.

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys.111, 071101 (2012).
[CrossRef]

Li, S. F.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

Ling, B.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011).
[CrossRef] [PubMed]

Litwin-Staszewska, E.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Lorenz, M.

T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
[CrossRef] [PubMed]

Lucznik, B.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Lugli, P.

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

Malpuech, G.

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

Massies, J.

N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071–2073 (1996).
[CrossRef]

Mathew, M.

B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
[CrossRef]

Merzsch, S.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Misiewicz, J.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Moore, M. C.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

Morkoc, H.

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97, 061301 (2005).
[CrossRef]

Münch, S.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Muth, J. F.

M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
[CrossRef]

Nakamura, S.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

Ni, A.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

Nobis, T.

T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A72, 063806 (2005).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
[CrossRef] [PubMed]

Özgür, Ü.

M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
[CrossRef]

Painter, O.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005).
[CrossRef]

Perillat-Merceroz, G.

X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
[CrossRef]

Rahm, A.

T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
[CrossRef] [PubMed]

Redwing, J. M.

E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997).
[CrossRef]

Reitzenstein, S.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Reshchikov, M. A.

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97, 061301 (2005).
[CrossRef]

Riechert, H.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Rothemund, R.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Rzodkiewicz, W.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Sakai, M.

T. Kouno, K. Kishino, and M. Sakai, “Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy,” IEEE J. Quantum Electron.47, 1565–1570 (2011).
[CrossRef]

Sam-Giao, D.

X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
[CrossRef]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
[CrossRef]

Schmidt, M. C.

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
[CrossRef]

Schubert, E. F.

E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997).
[CrossRef]

Sharma, R.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

Skierbiszewki, C.

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Srinivasan, K.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005).
[CrossRef]

Stintz, A.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005).
[CrossRef]

Strassburg, M.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Sun, H. D.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011).
[CrossRef] [PubMed]

Sun, X. W.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011).
[CrossRef] [PubMed]

Tamboli, A. C.

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
[CrossRef]

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

Tessarek, C.

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C9, 596–600 (2012).
[CrossRef]

Turgut, C. M.

C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive change and optical absorption in wurtzite InN and GaN: Full-band approach,” Phys. Rev. B81, 155206 (2010).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

Waag, A.

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys.111, 071101 (2012).
[CrossRef]

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Wang, X.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Weber, W. M.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Wehmann, H.-H.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Wei, J. D.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

Wiersig, J.

J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A67, 023807 (2003).
[CrossRef]

Yang, P.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

Zakhleniuk, N. A.

C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive change and optical absorption in wurtzite InN and GaN: Full-band approach,” Phys. Rev. B81, 155206 (2010).
[CrossRef]

Zamfirescu, M.

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

Zhang, Z.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

ACS Nano

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010).
[CrossRef] [PubMed]

Adv. Mater.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011).
[CrossRef] [PubMed]

Appl. Phys. Express

G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009).
[CrossRef]

Appl. Phys. Lett.

E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997).
[CrossRef]

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002).
[CrossRef]

G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002).
[CrossRef]

N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071–2073 (1996).
[CrossRef]

X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010).
[CrossRef]

M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999).
[CrossRef]

Cryst. Growth Des.

S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011).
[CrossRef]

IEEE J. Quantum Electron.

T. Kouno, K. Kishino, and M. Sakai, “Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy,” IEEE J. Quantum Electron.47, 1565–1570 (2011).
[CrossRef]

J. Appl. Phys.

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97, 061301 (2005).
[CrossRef]

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys.111, 071101 (2012).
[CrossRef]

Nano Res.

C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010).
[CrossRef]

Nanotech.

R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

Nature Photon.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007).
[CrossRef]

Nature Phys.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006).
[CrossRef]

Phys. Rev. A

J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A67, 023807 (2003).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A72, 063806 (2005).
[CrossRef]

Phys. Rev. B

C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive change and optical absorption in wurtzite InN and GaN: Full-band approach,” Phys. Rev. B81, 155206 (2010).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005).
[CrossRef]

Phys. Rev. Lett.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007).
[CrossRef] [PubMed]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004).
[CrossRef] [PubMed]

Phys. Status Solidi C

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C9, 596–600 (2012).
[CrossRef]

Pranama - J. Phys.

B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010).
[CrossRef]

Superlatt. Microstr.

T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM image of an ensemble of self-assembled GaN rods vertically aligned on a sapphire substrate.

Fig. 2
Fig. 2

SEM image of a single GaN rod exhibiting a regular hexagonal shape with smooth facets and well defined edges.

Fig. 3
Fig. 3

CL spectra of the rod shown in Fig. 2. Spectrum A was recorded during 125 scans of the electron beam over the whole rod area. The inset is showing the position of the fixed electron beam for spectra B–F. The red dashed lines indicate the calculated TM WGMs with mode numbers from 37 to 49. The Q-factor of one selected WGM is labeled. The full width of half maximum of the GaN near band edge emission of graph A was determined to 155 meV.

Fig. 4
Fig. 4

μ-PL spectrum of a single GaN rod. The yellow defect band is superimposed by a large amount of WGMs. TM modes with mode numbers from 29 to 42 are marked. Q-factors of WGMs with a value larger than 1000 are labeled. A Q-factor of 4177 was measured at 2.30390 eV (538.1 nm). A detailed view of this mode with a full width at half maximum of 551.6 meV is displayed in the right inset. The left inset is showing an optical image of the GaN rod. The scale bar corresponds to 4 μm.

Fig. 5
Fig. 5

Comparison between CL and PL spectra recorded from the same rod. Graph A is the μ-PL spectrum of the rod. Graph B, C and D are recorded with a fixed electron beam at the right sidewall facet, left sidewall facet and top facet, respectively. The inset shows the SEM image of the rod.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

6 R i = λ mode n [ N + 6 π arctan ( β 3 n 2 4 ) ]

Metrics