Abstract

We demonstrate 400 Gbit/s frequency-division-multiplexed and polarization-division-multiplexed 256 QAM-OFDM transmission over 720 km with a spectral efficiency of 14 bit/s/Hz by using high-resolution frequency domain equalization (FDE) and digital back-propagation (DBP) methods. A detailed analytical evaluation of the 256 QAM-OFDM transmission is also provided, which clarifies the influence of quantization error in the digital coherent receiver on the waveform distortion compensation with DBP.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsletter23(1), 4–10 (2009).
  2. X. Liu, S. Chandrasekhar, T. Lotz, P. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” OFC2012, PDP5B.3.
  3. T. Omiya, K. Toyoda, M. Yoshida, and M. Nakazawa, “400 Gbit/s frequency-division-multiplexed and polarization-multiplexed 256 QAM-OFDM transmission over 400 km with a spectral efficiency of 14 bit/s/Hz,” OFC2012, OM2A.7.
  4. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
    [CrossRef]
  5. A. Al Amin, S. L. Jansen, H. Takahashi, I. Morita, and H. Tanaka, “A hybrid IQ imbalance compensation method for optical OFDM transmission,” Opt. Express18(5), 4859–4866 (2010).
    [CrossRef] [PubMed]
  6. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20(11), 12508–12514 (2012).
    [CrossRef] [PubMed]
  7. Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver,” Opt. Express20(21), 23383–23389 (2012).
    [CrossRef] [PubMed]
  8. K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
    [CrossRef]
  9. T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).
  10. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett.21(7), 459–461 (1996).
    [CrossRef] [PubMed]
  11. M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett.28(20), 1873–1875 (2003).
    [CrossRef] [PubMed]
  12. K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Marked performance improvement of 256 QAM transmission using a digital back-propagation method,” Opt. Express20(18), 19815–19821 (2012).
    [CrossRef] [PubMed]
  13. B. Schmauss, C. Lin, and R. Asif, “Progress in digital backward propagation,” ECOC2012, Th.1.D.5.

2012 (3)

2010 (1)

2009 (1)

P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsletter23(1), 4–10 (2009).

2007 (1)

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

2006 (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

2003 (2)

M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett.28(20), 1873–1875 (2003).
[CrossRef] [PubMed]

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).

1996 (1)

Al Amin, A.

Bélanger, P.-A.

Doran, N. J.

Fushimi, S.

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).

Hirooka, T.

Hongo, J.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

Jansen, S. L.

Kannari, F.

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).

Kasai, K.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

Koizumi, Y.

Morita, I.

Nakazawa, M.

Omenetto, F. G.

Omiya, T.

Paré, C.

Psaltis, D.

Shida, Y.

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

Takahashi, H.

Tanabe, T.

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).

Tanaka, H.

Toyoda, K.

Tsang, M.

Villeneuve, A.

Winzer, P. J.

P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsletter23(1), 4–10 (2009).

Yamazaki, T.

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).

Yoshida, M.

IEEE LEOS Newsletter (1)

P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsletter23(1), 4–10 (2009).

IEICE Electron. Express (2)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes (1)

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, “Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes42(12), 7313–7317 (2003).

Opt. Express (4)

Opt. Lett. (2)

Other (3)

B. Schmauss, C. Lin, and R. Asif, “Progress in digital backward propagation,” ECOC2012, Th.1.D.5.

X. Liu, S. Chandrasekhar, T. Lotz, P. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” OFC2012, PDP5B.3.

T. Omiya, K. Toyoda, M. Yoshida, and M. Nakazawa, “400 Gbit/s frequency-division-multiplexed and polarization-multiplexed 256 QAM-OFDM transmission over 400 km with a spectral efficiency of 14 bit/s/Hz,” OFC2012, OM2A.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental setup for 400 Gbit/s frequency-division-multiplexed and polarization-division multiplexed 256 QAM-OFDM transmission.

Fig. 2
Fig. 2

Schematic configuration of FDE.

Fig. 3
Fig. 3

Relation between N and EVM.

Fig. 4
Fig. 4

Constellations for 256 QAM-OFDM signals. (a) N = 1, (b) N = 16.

Fig. 5
Fig. 5

BER performance as a function of the OSNR under the back-to-back condition.

Fig. 6
Fig. 6

Optical spectra of OFDM signal, (a) back-to-back, (b) after 720 km transmission.

Fig. 7
Fig. 7

OSNR values as a function of transmission distance.

Fig. 8
Fig. 8

Single side-band (SSB) noise power spectrum of a heterodyne beat note between an LO and a pilot tone after a 720 km transmission.

Fig. 9
Fig. 9

Phase noise as a function of transmission distance.

Fig. 10
Fig. 10

(a) BER after 720 km transmission as a function of fiber launched power and (b) constellations for 256 QAM-OFDM signals after a 720 km transmission for a −2 dBm transmission power.

Fig. 11
Fig. 11

BER after 720 km transmission for each channel.

Fig. 12
Fig. 12

BER performances as a function of (a) received power and (b) transmission distance.

Fig. 13
Fig. 13

Numerical model for 256 QAM-OFDM transmission.

Fig. 14
Fig. 14

Amplitude fluctuation distribution in back-to-back constellation.

Fig. 15
Fig. 15

Numerical results of BER performance as a function of launched power.

Tables (1)

Tables Icon

Table 1 Parameters of the OFDM Signal

Metrics