Abstract

We report size-based sorting of micro- and sub-micron particles using optical forces on a planar optofluidic chip. Two different combinations of fluid flow and optical beam directions in liquid-core waveguides are demonstrated. These methods allow for tunability of size selection and sorting with efficiencies as high as 100%. Very good agreement between experimental results and calculated particle trajectories in the presence of flow and optical forces is found.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
    [CrossRef] [PubMed]
  2. J. Glückstad, “Microfluidics: Sorting particles with light,” Nat. Mater.3(1), 9–10 (2004).
    [CrossRef] [PubMed]
  3. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
    [CrossRef] [PubMed]
  4. C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, “Cell manipulation with magnetic particles toward microfluidic cytometry,” J. Appl. Phys.105(10), 102014 (2009).
    [CrossRef]
  5. N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip6(8), 974–980 (2006).
    [CrossRef] [PubMed]
  6. J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal. Chem.78(14), 5019–5025 (2006).
    [CrossRef] [PubMed]
  7. R. Johann and P. Renaud, “A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow,” Electrophoresis25(21-22), 3720–3729 (2004).
    [CrossRef] [PubMed]
  8. T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev.36(3), 492–506 (2007).
    [CrossRef] [PubMed]
  9. F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem.79(14), 5117–5123 (2007).
    [CrossRef] [PubMed]
  10. L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
    [CrossRef]
  11. S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip12(13), 2369–2376 (2012).
    [CrossRef] [PubMed]
  12. D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
    [CrossRef] [PubMed]
  13. D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
    [CrossRef] [PubMed]
  14. H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett.35(17), 2855–2857 (2010).
    [CrossRef] [PubMed]
  15. A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip10(6), 769–774 (2010).
    [CrossRef] [PubMed]
  16. S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett.10(7), 2408–2411 (2010).
    [CrossRef] [PubMed]
  17. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics4(1-2), 3–16 (2008).
    [CrossRef] [PubMed]
  18. R. Bernini, S. Campopiano, and L. Zeni, “Silicon micromachined hollow optical waveguides for sensing applications,” IEEE J. Sel. Top. Quantum Electron.8(1), 106–110 (2002).
    [CrossRef]
  19. S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip9(15), 2212–2216 (2009).
    [CrossRef] [PubMed]
  20. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett.33(7), 672–674 (2008).
    [CrossRef] [PubMed]
  21. S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Optofluidic particle concentration by a long-range dual-beam trap,” Opt. Lett.34(15), 2306–2308 (2009).
    [CrossRef] [PubMed]
  22. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  23. K. D. Leake, A. R. Hawkins, and H. Schmidt, “All-optical particle trap using orthogonally intersecting beams,” Photonics Res.1(1), 47–51 (2013).
    [CrossRef]
  24. S. B. Kim and S. S. Kim, “Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime,” J. Opt. Soc. Am. B23(5), 897–903 (2006).
    [CrossRef]

2013

K. D. Leake, A. R. Hawkins, and H. Schmidt, “All-optical particle trap using orthogonally intersecting beams,” Photonics Res.1(1), 47–51 (2013).
[CrossRef]

2012

L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
[CrossRef]

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip12(13), 2369–2376 (2012).
[CrossRef] [PubMed]

2010

H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett.35(17), 2855–2857 (2010).
[CrossRef] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip10(6), 769–774 (2010).
[CrossRef] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett.10(7), 2408–2411 (2010).
[CrossRef] [PubMed]

2009

C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, “Cell manipulation with magnetic particles toward microfluidic cytometry,” J. Appl. Phys.105(10), 102014 (2009).
[CrossRef]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Optofluidic particle concentration by a long-range dual-beam trap,” Opt. Lett.34(15), 2306–2308 (2009).
[CrossRef] [PubMed]

2008

2007

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev.36(3), 492–506 (2007).
[CrossRef] [PubMed]

F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem.79(14), 5117–5123 (2007).
[CrossRef] [PubMed]

2006

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip6(8), 974–980 (2006).
[CrossRef] [PubMed]

J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal. Chem.78(14), 5019–5025 (2006).
[CrossRef] [PubMed]

S. B. Kim and S. S. Kim, “Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime,” J. Opt. Soc. Am. B23(5), 897–903 (2006).
[CrossRef]

2005

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

2004

R. Johann and P. Renaud, “A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow,” Electrophoresis25(21-22), 3720–3729 (2004).
[CrossRef] [PubMed]

J. Glückstad, “Microfluidics: Sorting particles with light,” Nat. Mater.3(1), 9–10 (2004).
[CrossRef] [PubMed]

2003

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

2002

R. Bernini, S. Campopiano, and L. Zeni, “Silicon micromachined hollow optical waveguides for sensing applications,” IEEE J. Sel. Top. Quantum Electron.8(1), 106–110 (2002).
[CrossRef]

1992

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

Åberg, L.

F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem.79(14), 5117–5123 (2007).
[CrossRef] [PubMed]

Anselmetti, D.

L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
[CrossRef]

Applegate, R. W.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

Bado, P.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

Bahng, J. H.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

Bernini, R.

R. Bernini, S. Campopiano, and L. Zeni, “Silicon micromachined hollow optical waveguides for sensing applications,” IEEE J. Sel. Top. Quantum Electron.8(1), 106–110 (2002).
[CrossRef]

Bogunovic, L.

L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
[CrossRef]

Cai, H.

Campopiano, S.

R. Bernini, S. Campopiano, and L. Zeni, “Silicon micromachined hollow optical waveguides for sensing applications,” IEEE J. Sel. Top. Quantum Electron.8(1), 106–110 (2002).
[CrossRef]

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett.10(7), 2408–2411 (2010).
[CrossRef] [PubMed]

Deamer, D. W.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Dugan, M. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

Eichhorn, R.

L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
[CrossRef]

Erickson, D.

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip10(6), 769–774 (2010).
[CrossRef] [PubMed]

Fowlkes, J. B.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

Glückstad, J.

J. Glückstad, “Microfluidics: Sorting particles with light,” Nat. Mater.3(1), 9–10 (2004).
[CrossRef] [PubMed]

Grotberg, J. B.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Gu, W.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Hawkins, A. R.

K. D. Leake, A. R. Hawkins, and H. Schmidt, “All-optical particle trap using orthogonally intersecting beams,” Photonics Res.1(1), 47–51 (2013).
[CrossRef]

S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Optofluidic particle concentration by a long-range dual-beam trap,” Opt. Lett.34(15), 2306–2308 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett.33(7), 672–674 (2008).
[CrossRef] [PubMed]

Huh, D.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Jensen, K. F.

J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal. Chem.78(14), 5019–5025 (2006).
[CrossRef] [PubMed]

Johann, R.

R. Johann and P. Renaud, “A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow,” Electrophoresis25(21-22), 3720–3729 (2004).
[CrossRef] [PubMed]

Kamotani, Y.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Kim, S. B.

Kim, S. S.

Kralj, J. G.

J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal. Chem.78(14), 5019–5025 (2006).
[CrossRef] [PubMed]

Kripfgans, O. D.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

Kühn, S.

Lagae, L.

C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, “Cell manipulation with magnetic particles toward microfluidic cytometry,” J. Appl. Phys.105(10), 102014 (2009).
[CrossRef]

Laurell, T.

F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem.79(14), 5117–5123 (2007).
[CrossRef] [PubMed]

T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev.36(3), 492–506 (2007).
[CrossRef] [PubMed]

Leake, K. D.

K. D. Leake, A. R. Hawkins, and H. Schmidt, “All-optical particle trap using orthogonally intersecting beams,” Photonics Res.1(1), 47–51 (2013).
[CrossRef]

Lin, B. K.

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip12(13), 2369–2376 (2012).
[CrossRef] [PubMed]

Lin, S.

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett.10(7), 2408–2411 (2010).
[CrossRef] [PubMed]

Ling, Y.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

Lis, M. T. W.

J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal. Chem.78(14), 5019–5025 (2006).
[CrossRef] [PubMed]

Liu, C.

C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, “Cell manipulation with magnetic particles toward microfluidic cytometry,” J. Appl. Phys.105(10), 102014 (2009).
[CrossRef]

Lunt, E. J.

Ma, H.

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip12(13), 2369–2376 (2012).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

McFaul, S. M.

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip12(13), 2369–2376 (2012).
[CrossRef] [PubMed]

Measor, P.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett.33(7), 672–674 (2008).
[CrossRef] [PubMed]

Nilsson, A.

T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev.36(3), 492–506 (2007).
[CrossRef] [PubMed]

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

Pamme, N.

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip6(8), 974–980 (2006).
[CrossRef] [PubMed]

Peeters, S.

C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, “Cell manipulation with magnetic particles toward microfluidic cytometry,” J. Appl. Phys.105(10), 102014 (2009).
[CrossRef]

Petersson, F.

F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem.79(14), 5117–5123 (2007).
[CrossRef] [PubMed]

T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev.36(3), 492–506 (2007).
[CrossRef] [PubMed]

Phillips, B. S.

Poon, A. W.

Regtmeier, J.

L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
[CrossRef]

Reimann, P.

L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
[CrossRef]

Renaud, P.

R. Johann and P. Renaud, “A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow,” Electrophoresis25(21-22), 3720–3729 (2004).
[CrossRef] [PubMed]

Said, A. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

Schmidt, H.

K. D. Leake, A. R. Hawkins, and H. Schmidt, “All-optical particle trap using orthogonally intersecting beams,” Photonics Res.1(1), 47–51 (2013).
[CrossRef]

S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Optofluidic particle concentration by a long-range dual-beam trap,” Opt. Lett.34(15), 2306–2308 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett.33(7), 672–674 (2008).
[CrossRef] [PubMed]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

Schmidt, M. A.

J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal. Chem.78(14), 5019–5025 (2006).
[CrossRef] [PubMed]

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett.10(7), 2408–2411 (2010).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Squier, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

Stakenborg, T.

C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, “Cell manipulation with magnetic particles toward microfluidic cytometry,” J. Appl. Phys.105(10), 102014 (2009).
[CrossRef]

Swärd-Nilsson, A.-M.

F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem.79(14), 5117–5123 (2007).
[CrossRef] [PubMed]

Takayama, S.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

Wei, H.-H.

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

Wilhelm, C.

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip6(8), 974–980 (2006).
[CrossRef] [PubMed]

Yang, A. H. J.

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip10(6), 769–774 (2010).
[CrossRef] [PubMed]

Zeni, L.

R. Bernini, S. Campopiano, and L. Zeni, “Silicon micromachined hollow optical waveguides for sensing applications,” IEEE J. Sel. Top. Quantum Electron.8(1), 106–110 (2002).
[CrossRef]

Anal. Chem.

J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal. Chem.78(14), 5019–5025 (2006).
[CrossRef] [PubMed]

F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem.79(14), 5117–5123 (2007).
[CrossRef] [PubMed]

D. Huh, J. H. Bahng, Y. Ling, H.-H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem.79(4), 1369–1376 (2007).
[CrossRef] [PubMed]

Biophys. J.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

Chem. Soc. Rev.

T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev.36(3), 492–506 (2007).
[CrossRef] [PubMed]

Electrophoresis

R. Johann and P. Renaud, “A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow,” Electrophoresis25(21-22), 3720–3729 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

R. Bernini, S. Campopiano, and L. Zeni, “Silicon micromachined hollow optical waveguides for sensing applications,” IEEE J. Sel. Top. Quantum Electron.8(1), 106–110 (2002).
[CrossRef]

J. Appl. Phys.

C. Liu, T. Stakenborg, S. Peeters, and L. Lagae, “Cell manipulation with magnetic particles toward microfluidic cytometry,” J. Appl. Phys.105(10), 102014 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Lab Chip

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip6(8), 974–980 (2006).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006).
[CrossRef] [PubMed]

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip12(13), 2369–2376 (2012).
[CrossRef] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip10(6), 769–774 (2010).
[CrossRef] [PubMed]

Microfluid Nanofluidics

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

Nano Lett.

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett.10(7), 2408–2411 (2010).
[CrossRef] [PubMed]

Nat. Mater.

J. Glückstad, “Microfluidics: Sorting particles with light,” Nat. Mater.3(1), 9–10 (2004).
[CrossRef] [PubMed]

Nature

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Photonics Res.

K. D. Leake, A. R. Hawkins, and H. Schmidt, “All-optical particle trap using orthogonally intersecting beams,” Photonics Res.1(1), 47–51 (2013).
[CrossRef]

Physiol. Meas.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Soft Matter

L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann, “Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment,” Soft Matter8(14), 3900–3907 (2012).
[CrossRef]

Supplementary Material (4)

» Media 1: MOV (3531 KB)     
» Media 2: MOV (4049 KB)     
» Media 3: MOV (3129 KB)     
» Media 4: MOV (3641 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Image and (b) sketch of the “H” sample layout (gray: solid-core waveguides; blue: fluidic channels and liquid-core waveguides).

Fig. 2
Fig. 2

The orthogonal orientation (0.25μm is gold, 0.5μm is red, 1μm is green and 1.5μm is blue). See Media 1 and Media 2 for videos in this orientation. (a) Chip layout. (b) Orientation of Laser and Flows. (c) Flow and Laser are combined to create a velocity field. (d) Flow trajectories of beads in channel (points are experimental and lines are calculated). (e) Calculated trajectories of beads in an array of starting locations with vz = 10 μm/s, vx = 0 μm/s and P = 20.1mW for the counterpropagating orientation. For the 0.25μm, 0.5μm, 1μm, and 1.5μm beads, 32%, 44%, 76% and 100% are sorted, respectively. (f) Particle removal efficiencies with vz/vx = 0.3 (points are experimental and lines are calculated.

Fig. 3
Fig. 3

The counterpropagating orientation (0.25μm is gold, 0.5μm is red, 1μm is green and 1.5μm is blue). See Media 3 and Media 4 for videos in this orientation. (a) Chip layout. (b) Orientation of Laser and Flows. (c) Flow and Laser are combined to create a velocity field. (d) Flow trajectories of beads in channel (points are experimental and lines are calculated). (e) Calculated trajectories of beads in an array of starting locations with vz = vx = 10 μm/s and P = 25mW for the counterpropagating orientation. For the 0.25μm, 0.5μm, 1μm, and 1.5μm beads, 0%, 25%, 100% and 100% are sorted respectively. (f) Calculated particle removal efficiencies with vz/vx = 0.7.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F FLOW =6πμrv.
F LASER =Qπ n r 2 c I,

Metrics