Abstract

We experimentally and numerically investigated the characteristics of 128 Gb/s dual polarization - quadrature phase shift keying signals received with two types of nonlinear equalizers (NLEs) followed by soft-decision (SD) low-density parity-check (LDPC) forward error correction (FEC). Successful co-operation among SD-FEC and NLEs over various nonlinear transmissions were demonstrated by optimization of parameters for NLEs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of Set-Partitioned Two-Polarization 16QAM Formats with PDM-QPSK and PDM-8QAM for Optical Transmission Systems with Error-Correction Coding,” in Proc.Eur. Conf. Opt. Commun. (2012), paper We.1.C.5.
    [CrossRef]
  2. B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK With Equal Rate and Bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
    [CrossRef]
  3. J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK signals,” Opt. Express20(26), B232–B237 (2012).
    [CrossRef] [PubMed]
  4. T. Koike-Akino, C. Duan, K. Parsons, K. Kojima, T. Yoshida, T. Sugihara, and T. Mizuochi, “High-order statistical equalizer for nonlinearity compensation in dispersion-managed coherent optical communications,” Opt. Express20(14), 15769–15780 (2012).
    [CrossRef] [PubMed]
  5. S. Oda, T. Tanimura, T. Hoshida, Y. Akiyama, H. Nakashima, K. Sone, Y. Aoki, W. Yan, Z. Tao, L. Dou, L. Li, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “Experimental Investigation on Nonlinear Distortions with Perturbation Back-propagation Algorithm in 224 Gb/s DP-16QAM Transmission,” in Proc.Opt. Fiber Commun. Conf. (2012), paper OM3A.2.
    [CrossRef]
  6. T. Tanimura, S. Oda, T. Hoshida, Y. Aoki, Z. Tao, and J. C. Rasmussen, “ Co-operation of Digital Nonlinear Equalizers and Soft-Decision LDPC FEC in Nonlinear Transmission,” in Proc.Eur. Conf. Opt. Commun. (2013), paper Mo.3.D.3.
  7. DVB-S.2 Standard Specification, ETSI EN 302 307 V1.1.1 (2005–03).
  8. T. Tanimura, T. Hoshida, S. Oda, T. Tanaka, C. Ohsima, Z. Tao, and J. C. Rasmussen, “Systematic analysis on multi-segment dual-polarisation nonlinear compensation in 112 Gb/s DP-QPSK coherent receiver,” in Proc.Eur. Conf. Opt. Commun. (2009) (2009), paper 9.4.5.
  9. L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “Nonlinear Polarization Crosstalk Canceller for Dual-Polarization Digital Coherent Receivers,” in Proc.Opt. Fiber Commun. Conf. (2010), paper OWE3.
    [CrossRef]
  10. A. Bisplinghoff, C. Cabirol, S. Langenbach, W. Sauer-Greff, and B. Schmauss, “Soft Decision Metrics for Differentially Encoded QPSK,” in Proc.Eur. Conf. Opt. Commun. (2011), paper Tu.6.A.2.
    [CrossRef]
  11. P. Leoni, V. Sleiffer, S. Calabrò, V. Veljanovski, M. Kuschnerov, S. L. Jansen, and B. Lankl, “Impact of Interleaving on SD-FEC Operating in Highly Non-Linear XPM-Limited Regime,” in Proc.Opt. Fiber Commun. Conf. (2013), paper OW1E.6.
    [CrossRef]
  12. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol.30(10), 1524–1539 (2012).
    [CrossRef]

2012

Alreesh, S.

Bosco, G.

Carena, A.

Curri, V.

Duan, C.

Elschner, R.

Fischer, J. K.

Forghieri, F.

Frey, F.

Kaneda, N.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK With Equal Rate and Bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Koike-Akino, T.

Kojima, K.

Krongold, B.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK With Equal Rate and Bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Lee, S. C. J.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK With Equal Rate and Bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Meuer, C.

Mizuochi, T.

Molle, L.

Parsons, K.

Pfau, T.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK With Equal Rate and Bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Poggiolini, P.

Schmidt-Langhorst, C.

Schubert, C.

Sugihara, T.

Tanimura, T.

Yoshida, T.

IEEE Photon. Technol. Lett.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK With Equal Rate and Bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

S. Oda, T. Tanimura, T. Hoshida, Y. Akiyama, H. Nakashima, K. Sone, Y. Aoki, W. Yan, Z. Tao, L. Dou, L. Li, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “Experimental Investigation on Nonlinear Distortions with Perturbation Back-propagation Algorithm in 224 Gb/s DP-16QAM Transmission,” in Proc.Opt. Fiber Commun. Conf. (2012), paper OM3A.2.
[CrossRef]

T. Tanimura, S. Oda, T. Hoshida, Y. Aoki, Z. Tao, and J. C. Rasmussen, “ Co-operation of Digital Nonlinear Equalizers and Soft-Decision LDPC FEC in Nonlinear Transmission,” in Proc.Eur. Conf. Opt. Commun. (2013), paper Mo.3.D.3.

DVB-S.2 Standard Specification, ETSI EN 302 307 V1.1.1 (2005–03).

T. Tanimura, T. Hoshida, S. Oda, T. Tanaka, C. Ohsima, Z. Tao, and J. C. Rasmussen, “Systematic analysis on multi-segment dual-polarisation nonlinear compensation in 112 Gb/s DP-QPSK coherent receiver,” in Proc.Eur. Conf. Opt. Commun. (2009) (2009), paper 9.4.5.

L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “Nonlinear Polarization Crosstalk Canceller for Dual-Polarization Digital Coherent Receivers,” in Proc.Opt. Fiber Commun. Conf. (2010), paper OWE3.
[CrossRef]

A. Bisplinghoff, C. Cabirol, S. Langenbach, W. Sauer-Greff, and B. Schmauss, “Soft Decision Metrics for Differentially Encoded QPSK,” in Proc.Eur. Conf. Opt. Commun. (2011), paper Tu.6.A.2.
[CrossRef]

P. Leoni, V. Sleiffer, S. Calabrò, V. Veljanovski, M. Kuschnerov, S. L. Jansen, and B. Lankl, “Impact of Interleaving on SD-FEC Operating in Highly Non-Linear XPM-Limited Regime,” in Proc.Opt. Fiber Commun. Conf. (2013), paper OW1E.6.
[CrossRef]

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of Set-Partitioned Two-Polarization 16QAM Formats with PDM-QPSK and PDM-8QAM for Optical Transmission Systems with Error-Correction Coding,” in Proc.Eur. Conf. Opt. Commun. (2012), paper We.1.C.5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Coding and framing for experiment and simulation.

Fig. 2
Fig. 2

Nonlinear equalizers (NLEs), (a) back propagation nonlinear compensator (BP-NLC) for self-phase modulation (SPM) compensation, (b) nonlinear polarization crosstalk canceler (NPCC) to mitigate polarization crosstalk between x-and y-polarization.

Fig. 3
Fig. 3

System setup. LD: laser diode, AWG: arrayed waveguide grating, PPG: pulse pattern generator, DAC: digital analogue converter, Pol. Mux: polarization multiplexing emulator, WSS: wavelength selective switch, VOA: variable optical attenuator, OBPF: optical band pass filter, LSPS: loop-synchronous polarization scrambler, SW: optical switch, DCM: dispersion compensation module, ASE: amplified spontaneous emission, LO: local oscillator, DSO: digital storage oscilloscope, BP-NLC: back propagation nonlinear compensator, AEQ: adaptive equalizer, FOC: frequency offset compensator, CPR: carrier phase recovery, NPCC: nonlinear polarization crosstalk canceller, and LLR: log-likelihood ratio detector.

Fig. 4
Fig. 4

(a) Measured pre-SD-FEC BER vs. post-SD-FEC BER after transmission, (b) cumulative distribution function (CDF) of normalized noise, Solid line: Gaussian fit, crosses: back-to-back, open squares: after transmission w/o NLEs, open circles: after transmission w/ NLE (optimal parameters), and closed triangles: after transmission w/ NLEs (non-optimal parameters).

Fig. 5
Fig. 5

Measured BERs vs. OSNR after 10-span transmission with and without NLEs and LDPC SD-FEC.

Fig. 6
Fig. 6

Numerical simulated pre SD-FEC BER vs post SD-FEC BER after various nonlinear transmission links (a) without all nonlinear equalizers, and (b) with all NLEs including BP-NLC and NPCC (opt. parameters). Fiber parameters in simulation, standard SMF: Loss = 0.2 dB/km, dispersion = 16.8 ps/nm/km, nonlinear refractive index = 2.7 × 10−20 m2/W, Aeff = 86 μm2, NZ-DSF: Loss = 0.2 dB/km, dispersion = 2.4 ps/nm/km, nonlinear refractive index = 2.5 × 10−20 m2/W, Aeff = 55 μm2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E x out = E x in exp( j( α | E x in | 2 +β | E y in | 2 ) ), E y out = E y in exp( j( α | E y in | 2 +β | E x in | 2 ) ).
( R x R y )=( 1 | W yx | 2 W xy W yx 1 | W xy | 2 )( S x S y ),
W xy (n)= k=N/2 N/2 R x (n+k) S x (n+k) S y (n+k) , W yx (n)= k=N/2 N/2 R y (n+k) S y (n+k) S x (n+k)
E x out = E x in E y in W xy , E y out = E y in E x in W yx .

Metrics