Abstract

In this paper, an energy harvesting/re-radiating device is proposed to realize high efficiency energy conversion in the solar thermo-photovoltaic system. Such device consists of double-sided metamaterials which are assembled by a broadband absorber working in the major solar spectrum, and a back-by-back narrowband emitter working in the infrared band. It is theoretically proved that most of solar light (from 0.28 μm to 4 μm) can be collected, and then, converted to a sharp emission at the maximal response energy level (~0.4 eV) of photovoltaic cells in thermal equilibrium state. The impact of high temperature (as large as 966 K) and the parasitic radiation on the performance is discussed and compensated by geometric optimization.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  2. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685 (2003).
    [CrossRef]
  3. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol.18(5), S151–S157 (2003).
    [CrossRef]
  4. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express17(17), 15145–15159 (2009).
    [CrossRef] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  6. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399 (2004).
    [CrossRef]
  7. M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
    [CrossRef]
  8. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
    [CrossRef] [PubMed]
  9. M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
    [CrossRef]
  10. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B72(7), 075127 (2005).
    [CrossRef]
  11. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
    [CrossRef]
  12. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
    [CrossRef] [PubMed]
  13. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express17(25), 22800–22812 (2009).
    [CrossRef] [PubMed]
  14. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
    [CrossRef]
  15. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
    [CrossRef] [PubMed]
  16. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express19(18), 17413–17420 (2011).
    [CrossRef] [PubMed]
  17. Thermophotovoltaic from Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Thermophotovoltaic .
  18. X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013).
    [CrossRef] [PubMed]
  19. Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269(2), 411–417 (2007).
    [CrossRef]
  20. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011).
    [CrossRef] [PubMed]
  21. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009).
    [CrossRef] [PubMed]
  22. M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, “Engineering heavily doped silicon for broadband absorber in the Terahertz regime,” Opt. Express20(23), 25513–25519 (2012).
    [CrossRef] [PubMed]
  23. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B.27(3), 030498 (2010).
  24. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011).
    [CrossRef] [PubMed]
  25. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
    [CrossRef]
  26. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
    [CrossRef]
  27. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012).
    [CrossRef] [PubMed]
  28. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
    [CrossRef]
  29. E. D. Palik, Handbook of Optical Constant of Solids (Academic, New York, 1985).
  30. W. S. Martin, E. M. Duchane, and H. Blau, “Measurement of optical constant at high temperatures,” J. Opt. Soc. Am.55(12), 1623 (1965).
    [CrossRef]
  31. L. N. Aksyotuv, “Temperature dependence of the optical constants of tungsten and gold,” J. Opt. Soc. Am. A.55(12), 1623–1627 (1965).
  32. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE6273, 6273K (2006).
    [CrossRef]
  33. UQG OPTICS DATASHEET SCHOTT @ BOROFLOAT. http://www.uqgoptics.com/materials_commercial_schott_borofloat.aspx .
  34. X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
    [CrossRef] [PubMed]
  35. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
    [CrossRef]

2013 (1)

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013).
[CrossRef] [PubMed]

2012 (5)

2011 (6)

2010 (1)

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B.27(3), 030498 (2010).

2009 (4)

2008 (4)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
[CrossRef]

2007 (2)

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269(2), 411–417 (2007).
[CrossRef]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
[CrossRef]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE6273, 6273K (2006).
[CrossRef]

2005 (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B72(7), 075127 (2005).
[CrossRef]

2004 (1)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399 (2004).
[CrossRef]

2003 (2)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685 (2003).
[CrossRef]

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol.18(5), S151–S157 (2003).
[CrossRef]

1965 (2)

L. N. Aksyotuv, “Temperature dependence of the optical constants of tungsten and gold,” J. Opt. Soc. Am. A.55(12), 1623–1627 (1965).

W. S. Martin, E. M. Duchane, and H. Blau, “Measurement of optical constant at high temperatures,” J. Opt. Soc. Am.55(12), 1623 (1965).
[CrossRef]

Agrawal, M.

Aksyotuv, L. N.

L. N. Aksyotuv, “Temperature dependence of the optical constants of tungsten and gold,” J. Opt. Soc. Am. A.55(12), 1623–1627 (1965).

Blau, H.

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

Celanovic, I.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B72(7), 075127 (2005).
[CrossRef]

Chang, Y.

M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
[CrossRef]

Chen, H. T.

Chen, X.

Chen, Y.

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269(2), 411–417 (2007).
[CrossRef]

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Chern, R. L.

Chowdhury, D. R.

Chuang, T.

M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
[CrossRef]

Cui, T. J.

X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Diem, M.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Duchane, E. M.

Fan, S.

Feng, Q.

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE6273, 6273K (2006).
[CrossRef]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Greffet, J.-J.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

Gu, S.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

Harder, N. P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol.18(5), S151–S157 (2003).
[CrossRef]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B.27(3), 030498 (2010).

Hu, C.

Hu, Y. H.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013).
[CrossRef] [PubMed]

Huang, C.

Huang, L.

Jiang, S. C.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013).
[CrossRef] [PubMed]

Jiang, W. X.

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B.27(3), 030498 (2010).

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685 (2003).
[CrossRef]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B72(7), 075127 (2005).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Laroche, M.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

Lee, S.

M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
[CrossRef]

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE6273, 6273K (2006).
[CrossRef]

Li, H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

Lin, C. H.

Lin, H. Y.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Luo, C.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Luo, S. N.

Luo, X.

Ma, H. F.

Martin, W. S.

Meng, C.

M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Peng, R. W.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013).
[CrossRef] [PubMed]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B72(7), 075127 (2005).
[CrossRef]

Peumans, P.

Pincon, O.

Pu, M.

Ramani, S.

Reiten, M. T.

Rephaeli, E.

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399 (2004).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685 (2003).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Sergeant, N. P.

Shen, X. P.

X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Soukoulis, C.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

Taylor, A. J.

Tsai, M.

M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Wang, C.

Wang, M.

Wang, Y.

Wurfel, P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol.18(5), S151–S157 (2003).
[CrossRef]

Xiong, X.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013).
[CrossRef] [PubMed]

Ye, Y.

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B.27(3), 030498 (2010).

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399 (2004).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685 (2003).
[CrossRef]

Zhang, Z.

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269(2), 411–417 (2007).
[CrossRef]

Zhao, J. M.

Zhao, X.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Zhao, Z.

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Adv. Mater. (1)

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
[CrossRef]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399 (2004).
[CrossRef]

M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685 (2003).
[CrossRef]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

J. Appl. Phys. (2)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A. (1)

L. N. Aksyotuv, “Temperature dependence of the optical constants of tungsten and gold,” J. Opt. Soc. Am. A.55(12), 1623–1627 (1965).

J. Opt. Soc. Am. B. (1)

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B.27(3), 030498 (2010).

Nano Lett. (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269(2), 411–417 (2007).
[CrossRef]

Opt. Express (8)

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009).
[CrossRef] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express17(17), 15145–15159 (2009).
[CrossRef] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express17(25), 22800–22812 (2009).
[CrossRef] [PubMed]

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011).
[CrossRef] [PubMed]

X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express19(18), 17413–17420 (2011).
[CrossRef] [PubMed]

M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011).
[CrossRef] [PubMed]

M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, “Engineering heavily doped silicon for broadband absorber in the Terahertz regime,” Opt. Express20(23), 25513–25519 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B72(7), 075127 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE6273, 6273K (2006).
[CrossRef]

Semicond. Sci. Technol. (1)

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol.18(5), S151–S157 (2003).
[CrossRef]

Other (3)

Thermophotovoltaic from Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Thermophotovoltaic .

UQG OPTICS DATASHEET SCHOTT @ BOROFLOAT. http://www.uqgoptics.com/materials_commercial_schott_borofloat.aspx .

E. D. Palik, Handbook of Optical Constant of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The principle geometry of the harvesting/re-radiating system.

Fig. 2
Fig. 2

Design of the broadband absorber. (a) Three dimensional model of the broadband absorber, (b) The illustration of the broadband absorber unit cell.

Fig. 3
Fig. 3

Absorption spectrums of the broadband absorber at different temperatures and transmissivity of the borofloat. The blue dashed curve describes the absorption of the absorber made of tungsten only. The black dot curve shows absorption of the broadband absorber at 300 K and the red dashed curve stands for absorption of the absorber at 966 K. The green solid curve describes transmission of the borofloat, which possesses characteristics of infrared suppression. The gray curve is solar irradiance spectrum.

Fig. 4
Fig. 4

(a) Simulated electric amplitude along z direction (Ez) distributions on the central cross section of a tungsten-fused silica multilayered truncated pyramid unit cell at some wavelengths. (b) Simulated electric amplitude distributions on the central cross section of a tungsten truncated pyramid unit cell at some wavelengths.

Fig. 5
Fig. 5

(a) Absorbance of the broadband absorber as a function of incidence angle and frequency for TE polarizations (b) Absorbance of the broadband absorber as a function of incidence angle and frequency for TM polarizations.

Fig. 6
Fig. 6

Design of the selective emitter. (a) Perspective view of the traditional trilayer structure unit cell. (b) Perspective view of the flat selective emitter unit cell. (c) Front view of the emitter unit cell. (d) Top view of the emitter unit cell. (e) The electric field distribution of the traditional trilayer structure, (f) The electric field distribution of the flat selective structure. (g) The emittance of the traditional trilayer structure and the flat selective structure at different temperatures.

Fig. 7
Fig. 7

(a) and (b) Simulated emissivity for various polar angles of incidence for TE polarizations and TM polarizations, respectively. (c) and (d) Simulated emissivity for θ = 20 deg and various azimuthal angles for TE polarizations and TM polarizations, respectively.

Fig. 8
Fig. 8

Emission spectrums for different fabrication tolerances. (a) (b) Emission spectrums for different radius of the fused silica rs and the tungsten cylinder ri inside, respectively. (c) (d) Emission spectrums for different thickness of the fused silica hd and the tungsten cylinder hm, respectively. (e) Emission spectrums for Δc = 0 and 50 nm.

Fig. 9
Fig. 9

Blackbody radiation (black dashed curve) and radiative power of the selective emitter (blue solid curve). If the temperature is adjusted, the maximum of the blackbody spectra and the emission peak coincide using Wien Displacement Law (T = 966 K).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M bb ( λ,T )= c 1 λ 5 ( e c 2 /λT 1 ) ( W/c m 2 μm )
M bb ( T )= 2* 10 6 10 5 c 1 λ 5 ( e c 2 /λT 1 ) dλ
M( λ,T )=E( λ,T ) M bb ( λ,T )

Metrics