Abstract

Computer-generated holograms (CGHs) are usually displayed on electronic devices. However, the resolution of current output devices is not high enough to display CGHs, so the visual field is very narrow. A method using a Fourier transform optical system has been proposed, to enlarge the size of reconstructed images. This paper describes a method of CGH calculations for the Fourier transform optical system to enlarge the visual field and reconstruct realistic images by using the ray tracing method. This method reconstructs images at arbitrary depths and also eliminates unnecessary light including zero-th order light.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Isono and M. Yasuda, “Flicker-free field sequential stereo-scopic TV system and measurement of human depth perception,” SMPTE J. 99(2), 138–141(1990).
  2. T. Motoki, I. Yayuma, H. Isono, and S. Komiyama, “Research on 3-D television system at NHK,” ABU Tech. Rev. 150, 14–18 (1991).
  3. D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
    [Crossref]
  4. S. Ichinose, “Fullcolor stereoscopic video pickup and display technique without special glasses,” Proc.SID 30-4, 319–323 (1989).
  5. M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. de Phys. 7(4), 821–825 (1908).
  6. Y. Takaki, “Super multi-view display with 128 viewpoints and viewpoint formation,” Proc. SPIE 7237, 72371T (2009).
    [Crossref]
  7. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref] [PubMed]
  8. K. Matsushima and S. Nakahara, “Extremely high-defintion full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
    [Crossref] [PubMed]
  9. R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display,” Appl. Opt. 48, 4246–4255 (2009).
    [Crossref] [PubMed]
  10. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of digital holography,” Appl. Opt. 48, D117–D127 (2008).
    [Crossref]
  11. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
    [Crossref] [PubMed]
  12. K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211 (2005).
    [Crossref]
  13. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray tracing method,” Appl. Opt. 52, A201–A209 (2013).
    [Crossref] [PubMed]
  14. R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
    [Crossref]
  15. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008).
    [Crossref] [PubMed]
  16. T. Senoh, T. Mishima, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Display Technol. 7(7), 382–390 (2011).
    [Crossref]
  17. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic 3D image reconstruction in CGH with Fourier transform optical sytem,” Proc. SPIE 8644, 86440D (2013).
    [Crossref]
  18. G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
    [Crossref]
  19. T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DW2A.11.
    [Crossref]

2013 (2)

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray tracing method,” Appl. Opt. 52, A201–A209 (2013).
[Crossref] [PubMed]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic 3D image reconstruction in CGH with Fourier transform optical sytem,” Proc. SPIE 8644, 86440D (2013).
[Crossref]

2011 (1)

2009 (3)

2008 (2)

2005 (2)

1991 (1)

T. Motoki, I. Yayuma, H. Isono, and S. Komiyama, “Research on 3-D television system at NHK,” ABU Tech. Rev. 150, 14–18 (1991).

1990 (1)

H. Isono and M. Yasuda, “Flicker-free field sequential stereo-scopic TV system and measurement of human depth perception,” SMPTE J. 99(2), 138–141(1990).

1989 (3)

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
[Crossref]

S. Ichinose, “Fullcolor stereoscopic video pickup and display technique without special glasses,” Proc.SID 30-4, 319–323 (1989).

1965 (1)

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

1908 (1)

M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. de Phys. 7(4), 821–825 (1908).

Chen, R. H.-Y.

Cunnally, W. T.

D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
[Crossref]

DeFanti, T. A.

D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Hahn, J.

Haussler, R.

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

Ichikawa, T.

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic 3D image reconstruction in CGH with Fourier transform optical sytem,” Proc. SPIE 8644, 86440D (2013).
[Crossref]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray tracing method,” Appl. Opt. 52, A201–A209 (2013).
[Crossref] [PubMed]

Ichinose, S.

S. Ichinose, “Fullcolor stereoscopic video pickup and display technique without special glasses,” Proc.SID 30-4, 319–323 (1989).

Isono, H.

T. Motoki, I. Yayuma, H. Isono, and S. Komiyama, “Research on 3-D television system at NHK,” ABU Tech. Rev. 150, 14–18 (1991).

H. Isono and M. Yasuda, “Flicker-free field sequential stereo-scopic TV system and measurement of human depth perception,” SMPTE J. 99(2), 138–141(1990).

Kim, H.

Komiyama, S.

T. Motoki, I. Yayuma, H. Isono, and S. Komiyama, “Research on 3-D television system at NHK,” ABU Tech. Rev. 150, 14–18 (1991).

Kurita, T.

Lee, B.

Leister, N.

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

Lim, Y.

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. de Phys. 7(4), 821–825 (1908).

Matsushima, K.

Mishima, T.

Missbach, R.

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

Motoki, T.

T. Motoki, I. Yayuma, H. Isono, and S. Komiyama, “Research on 3-D television system at NHK,” ABU Tech. Rev. 150, 14–18 (1991).

Nakahara, S.

Oi, R.

Okuyama, F.

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DW2A.11.
[Crossref]

Park, G.

Reichlet, S.

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

Resch, M.

D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
[Crossref]

Sakamoto, Y.

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic 3D image reconstruction in CGH with Fourier transform optical sytem,” Proc. SPIE 8644, 86440D (2013).
[Crossref]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray tracing method,” Appl. Opt. 52, A201–A209 (2013).
[Crossref] [PubMed]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211 (2005).
[Crossref]

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DW2A.11.
[Crossref]

Sandin, D. J.

D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
[Crossref]

Sandor, E.

D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
[Crossref]

Schwerdtner, A.

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

Senoh, T.

Stroke, G. W.

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
[Crossref]

Takaki, Y.

Y. Takaki, “Super multi-view display with 128 viewpoints and viewpoint formation,” Proc. SPIE 7237, 72371T (2009).
[Crossref]

Wilkinson, T. D.

Yamaguchi, K.

Yamamoto, K.

Yang, C.

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DW2A.11.
[Crossref]

Yasuda, M.

H. Isono and M. Yasuda, “Flicker-free field sequential stereo-scopic TV system and measurement of human depth perception,” SMPTE J. 99(2), 138–141(1990).

Yayuma, I.

T. Motoki, I. Yayuma, H. Isono, and S. Komiyama, “Research on 3-D television system at NHK,” ABU Tech. Rev. 150, 14–18 (1991).

Yoneyama, T.

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DW2A.11.
[Crossref]

Zchau, E.

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

ABU Tech. Rev. (1)

T. Motoki, I. Yayuma, H. Isono, and S. Komiyama, “Research on 3-D television system at NHK,” ABU Tech. Rev. 150, 14–18 (1991).

Appl. Opt. (6)

Appl. Phys. Lett. (1)

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
[Crossref]

J. de Phys. (1)

M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. de Phys. 7(4), 821–825 (1908).

J. Display Technol. (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Opt. Express (1)

Proc. SPIE (4)

R. Haussler, S. Reichlet, N. Leister, E. Zchau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (1989).
[Crossref]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic 3D image reconstruction in CGH with Fourier transform optical sytem,” Proc. SPIE 8644, 86440D (2013).
[Crossref]

Y. Takaki, “Super multi-view display with 128 viewpoints and viewpoint formation,” Proc. SPIE 7237, 72371T (2009).
[Crossref]

D. J. Sandin, E. Sandor, W. T. Cunnally, M. Resch, and T. A. DeFanti, “Computer-generated barrier-strip autostereography,” Proc. SPIE 1083, 65–75 (1989).
[Crossref]

Proc.SID (1)

S. Ichinose, “Fullcolor stereoscopic video pickup and display technique without special glasses,” Proc.SID 30-4, 319–323 (1989).

SMPTE J. (1)

H. Isono and M. Yasuda, “Flicker-free field sequential stereo-scopic TV system and measurement of human depth perception,” SMPTE J. 99(2), 138–141(1990).

Other (1)

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DW2A.11.
[Crossref]

Supplementary Material (1)

» Media 1: AVI (3555 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Calculation algorithm for CGH with the ray tracing method.

Fig. 2
Fig. 2

Phong reflection model.

Fig. 3
Fig. 3

Fourier transform optical system.

Fig. 4
Fig. 4

Position of reconstructed images.

Fig. 5
Fig. 5

Elimination of reconstructed image.

Fig. 6
Fig. 6

Expanded visual field.

Fig. 7
Fig. 7

Compensation of reconstructed image.

Fig. 8
Fig. 8

Block diagram of the calculation for CGHs.

Fig. 9
Fig. 9

Eyepiece type full-color electronic holographic display. (a) The photo taken from the front. (b) The photo taken from the forward left.

Fig. 10
Fig. 10

Measurement of the size of reconstructed images at −50 [cm]. (a) The size of reconstructed image. (b) Magnified image.

Fig. 11
Fig. 11

Experimental geometry and reconstructed images. (a) Experimental geometry of complex scene. (b) Reconstructed image focused on a metal sphere ( Media 1).

Fig. 12
Fig. 12

Experimental geometry and reconstructed images. (a) Experimental geometry of a glass sphere. (b) Reconstructed image of a glass sphere.

Tables (1)

Tables Icon

Table 1 Setup parameters for experiments.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I r = I a ρ a + ( N L ) k d ρ d + k s ρ s ,
h m ( x , y ) = i = 1 N m A i r i ( x , y ) exp ( j 2 π λ r i ( x , y ) + j ϕ i ) ,
r i = ( x i x ) 2 + ( y i y ) 2 + z i 2 ,
y 1 = y o z o z 1 , z 1 = z o f 2 z o + f ,
y 2 = y o , z 2 = z o .
y t h = f y o f + z o .
w = λ f p ,
z e _ min = L f L + w ,
ϕ F = 2 tan 1 ( w + L 2 f ) ,
z o = f A f A ,
x o = x i z o B ,
y o = y i z o B ,
A = z i ( f D ) + d 2 z i D f ,
B = A + D f A f .
z h = ( f D f D D ) .
r o = ( x o x ) 2 + ( y o y ) 2 + z o 2 ,
ϕ max = 2 sin 1 ( λ 2 p ) .

Metrics