Abstract

We report a versatile way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between a single layer graphene (SLG) and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to ∼0. We use this to mode-lock a vertical-external-cavity surface-emitting laser (VECSEL) from 935 to 981 nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors or dielectric coatings on gain materials. Conversely, it can also be used to increase the absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
    [CrossRef] [PubMed]
  2. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429, 67–120 (2006).
    [CrossRef]
  3. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (CRC Press, 2003).
  4. T. Südmeyer, D. J. H. C. Maas, and U. Keller, “Mode-Locked Semiconductor Disk Lasers,” in Semiconductor Disk Lasers, O.G. Okhotnikov, ed. (Wiley-VCH, 2010), pp. 213–261.
    [CrossRef]
  5. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2, 739–747 (2011).
    [CrossRef] [PubMed]
  6. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
    [CrossRef] [PubMed]
  7. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
    [CrossRef]
  8. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
    [CrossRef]
  9. V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
    [CrossRef]
  10. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
    [CrossRef]
  11. B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
    [CrossRef]
  12. M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
    [CrossRef]
  13. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
    [CrossRef]
  14. O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.
  15. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
    [CrossRef] [PubMed]
  16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
    [CrossRef]
  17. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
    [CrossRef] [PubMed]
  18. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
    [CrossRef] [PubMed]
  19. D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).
  20. A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
    [CrossRef]
  21. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
    [CrossRef]
  22. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
    [CrossRef]
  23. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
    [CrossRef]
  24. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
    [CrossRef] [PubMed]
  25. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
    [CrossRef]
  26. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
    [CrossRef]
  27. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
    [CrossRef] [PubMed]
  28. M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
    [CrossRef] [PubMed]
  29. C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B108, 129–135 (2012).
    [CrossRef]
  30. F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
    [CrossRef] [PubMed]
  31. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
    [CrossRef]
  32. B. E. A. Saleh and M. K. Teich, Fundamentals of Photonics, 2 ed. (John Wiley & Sons, Inc., 2007).
  33. K. F. Renk, Basics of Laser Physics (Springer, 2012).
    [CrossRef]
  34. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
    [CrossRef] [PubMed]
  35. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
    [CrossRef] [PubMed]
  36. L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
    [CrossRef] [PubMed]
  37. A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol.8, 235–246 (2013).
    [CrossRef] [PubMed]
  38. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61, 14095–14107 (2000).
    [CrossRef]
  39. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
    [CrossRef] [PubMed]
  40. V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
    [CrossRef]
  41. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
    [CrossRef] [PubMed]
  42. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
    [CrossRef] [PubMed]
  43. W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
    [CrossRef]
  44. C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett.105, 127404 (2010).
    [CrossRef] [PubMed]
  45. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
    [CrossRef] [PubMed]
  46. E. Malic, T. Winzer, and A. Knorr, “Efficient orientational carrier relaxation in optically excited graphene,” Appl. Phys. Lett.101, 213110 (2012).
    [CrossRef]
  47. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
    [CrossRef]
  48. R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
    [CrossRef]

2013 (6)

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
[CrossRef]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol.8, 235–246 (2013).
[CrossRef] [PubMed]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

2012 (9)

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
[CrossRef] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

E. Malic, T. Winzer, and A. Knorr, “Efficient orientational carrier relaxation in optically excited graphene,” Appl. Phys. Lett.101, 213110 (2012).
[CrossRef]

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B108, 129–135 (2012).
[CrossRef]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

2011 (4)

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2, 739–747 (2011).
[CrossRef] [PubMed]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
[CrossRef] [PubMed]

2010 (7)

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett.105, 127404 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

2009 (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

2008 (5)

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

2007 (1)

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

2006 (3)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429, 67–120 (2006).
[CrossRef]

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

2005 (2)

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
[CrossRef] [PubMed]

2004 (1)

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

2000 (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61, 14095–14107 (2000).
[CrossRef]

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
[CrossRef]

Achete, C. A.

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Ahn, J. H.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

Anissimova, S.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

Antipov, O. L.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Artigas, D.

Aschwanden, A.

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

Aviles-Espinosa, R.

Bae, S.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

Baer, C. R. E.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Barbarin, Y.

Basko, D. M.

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol.8, 235–246 (2013).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Beecher, S. J.

Beere, H. E.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Bellancourt, A.-R.

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

Blake, P.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Bonaccorso, F.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Brida, D.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
[CrossRef]

Brown, C. T. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Brown, G.

Cancado, L. G.

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Capaz, R. B.

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

Cerullo, G.

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
[CrossRef]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Colombo, L.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Crommie, M.

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Ebling, D.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

Farrer, I.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Fermann, M. E.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (CRC Press, 2003).

Ferrari, A. C.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
[CrossRef]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol.8, 235–246 (2013).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
[CrossRef] [PubMed]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61, 14095–14107 (2000).
[CrossRef]

Ferreira, E. H. M.

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Filippidis, G.

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
[CrossRef]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (CRC Press, 2003).

Geim, A. K.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

Gini, E.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

Girit, C.

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Golling, M.

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
[CrossRef] [PubMed]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

Grange, R.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Hader, J.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

Haiml, M.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

Hamilton, C.

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
[CrossRef]

Häring, R.

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Hasan, T.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Head, C. R.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Heckl, O. H.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Heinen, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

Heinz, T. F.

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett.105, 127404 (2010).
[CrossRef] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Hoffmann, M.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
[CrossRef] [PubMed]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
[CrossRef] [PubMed]

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

Hong, B. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Iwaniuk, D.

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
[CrossRef]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

Jorio, A.

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Kar, A. K.

Kbashi, H. J.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Keller, U.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
[CrossRef] [PubMed]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
[CrossRef] [PubMed]

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2, 739–747 (2011).
[CrossRef] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429, 67–120 (2006).
[CrossRef]

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

T. Südmeyer, D. J. H. C. Maas, and U. Keller, “Mode-Locked Semiconductor Disk Lasers,” in Semiconductor Disk Lasers, O.G. Okhotnikov, ed. (Wiley-VCH, 2010), pp. 213–261.
[CrossRef]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Kim, Y. J.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Knorr, A.

E. Malic, T. Winzer, and A. Knorr, “Efficient orientational carrier relaxation in optically excited graphene,” Appl. Phys. Lett.101, 213110 (2012).
[CrossRef]

Koch, M.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

Koch, S. W.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

Krainer, L.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

Kravets, V. G.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

Krestnikov, I. L.

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Kulmala, T. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Kunert, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

Lagatsky, A. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
[CrossRef] [PubMed]

Lee, C. C.

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B108, 129–135 (2012).
[CrossRef]

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

Lee, Y.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Lee, Y. H.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
[CrossRef]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Lidorikis, E.

Liu, W.-T.

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

Liverini, V.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

Livshits, D. A.

Lombardo, A.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Lorenser, D.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

Loza-Alvarez, P.

Lui, C. H.

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett.105, 127404 (2010).
[CrossRef] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Maas, D. J. H. C.

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

T. Südmeyer, D. J. H. C. Maas, and U. Keller, “Mode-Locked Semiconductor Disk Lasers,” in Semiconductor Disk Lasers, O.G. Okhotnikov, ed. (Wiley-VCH, 2010), pp. 213–261.
[CrossRef]

Mak, K. F.

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett.105, 127404 (2010).
[CrossRef] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Malcolm, G.

Malic, E.

E. Malic, T. Winzer, and A. Knorr, “Efficient orientational carrier relaxation in optically excited graphene,” Appl. Phys. Lett.101, 213110 (2012).
[CrossRef]

Mangold, M.

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
[CrossRef] [PubMed]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Manzoni, C.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

Marchese, S. V.

Mary, R.

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
[CrossRef] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

Milana, S.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Miller, J. M.

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B108, 129–135 (2012).
[CrossRef]

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Moloney, J. V.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

Morier-Genoud, F.

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

Morris, O. J.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Mosley, P. J.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Moutinho, M. V. O.

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Nair, R. R.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Novoselov, K. S.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

Oehler, A. E. H.

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

Ohara, S.

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Pallmann, W. P.

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Paschotta, R.

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
[CrossRef] [PubMed]

Polini, M.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
[CrossRef]

Popa, D.

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Quarterman, A. H.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Renk, K. F.

K. F. Renk, Basics of Laser Physics (Springer, 2012).
[CrossRef]

Ri Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Ritchie, D. A.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Robertson, J.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
[CrossRef] [PubMed]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61, 14095–14107 (2000).
[CrossRef]

Rotermund, F.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Rudin, B.

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Saleh, B. E. A.

B. E. A. Saleh and M. K. Teich, Fundamentals of Photonics, 2 ed. (John Wiley & Sons, Inc., 2007).

Salmeron, M.

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

Santos, S. I. C. O.

Saraceno, C. J.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

Scheller, M.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

Scherer, A.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
[CrossRef]

Schibli, T. R.

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B108, 129–135 (2012).
[CrossRef]

Schön, S.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

Schriber, C.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Schuck, P. J.

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Shan, J.

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett.105, 127404 (2010).
[CrossRef] [PubMed]

Shen, Y. R.

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Sibbett, W.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Sieber, O. D.

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Sparenberg, M.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

Spühler, G. J.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Stavale, F.

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Stolz, W.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

Sucha, G.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (CRC Press, 2003).

Südmeyer, T.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
[CrossRef] [PubMed]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
[CrossRef] [PubMed]

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2, 739–747 (2011).
[CrossRef] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

T. Südmeyer, D. J. H. C. Maas, and U. Keller, “Mode-Locked Semiconductor Disk Lasers,” in Semiconductor Disk Lasers, O.G. Okhotnikov, ed. (Wiley-VCH, 2010), pp. 213–261.
[CrossRef]

Sun, Z.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Sundaram, R. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Teich, M. K.

B. E. A. Saleh and M. K. Teich, Fundamentals of Photonics, 2 ed. (John Wiley & Sons, Inc., 2007).

Tian, C. S.

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Tomadin, A.

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
[CrossRef]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

Torrisi, F.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Tropper, A. C.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429, 67–120 (2006).
[CrossRef]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Turnbull, A. P.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Unold, H. J.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Wang, F.

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Wang, T. L.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

Weber, A.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

Weingarten, K. J.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2, 739–747 (2011).
[CrossRef] [PubMed]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

Wilcox, K. G.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

Winzer, T.

E. Malic, T. Winzer, and A. Knorr, “Efficient orientational carrier relaxation in optically excited graphene,” Appl. Phys. Lett.101, 213110 (2012).
[CrossRef]

Wittwer, V. J.

Wu, S. W.

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

Wu, Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

Yeom, D.-I.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

Zaugg, C. A.

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

Zettl, A.

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Zhang, Y. B.

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Appl. Phys. B (3)

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B108, 129–135 (2012).
[CrossRef]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81, 27–32 (2005).
[CrossRef]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers,” Appl. Phys. B79, 927–932 (2004).
[CrossRef]

Appl. Phys. Express (1)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express5, 032701 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

E. Malic, T. Winzer, and A. Knorr, “Efficient orientational carrier relaxation in optically excited graphene,” Appl. Phys. Lett.101, 213110 (2012).
[CrossRef]

Biomed. Opt. Express (1)

Electron. Lett. (2)

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48, 516–517 (2012).
[CrossRef]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48, 588–589 (2012).
[CrossRef]

IEEE J. of Quantum Electron. (3)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. of Quantum Electron.27, 1332–1346 (1991).
[CrossRef]

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. of Quantum Electron.42, 838–847 (2006).
[CrossRef]

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. of Quantum Electron.38, 1268–1275 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18, 29–41 (2012).
[CrossRef]

IEEE Photonics Journal (1)

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics Journal3, 658–664 (2011).
[CrossRef]

Mater. Today (1)

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Nano Lett. (2)

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.11, 3190–3196 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (3)

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol.8, 235–246 (2013).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010).
[CrossRef] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3, 210–215 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

Nature Comm. (1)

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Comm.4, 1987 (2013).

Opt. Express (6)

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18, 27582–27588 (2010).
[CrossRef]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
[CrossRef] [PubMed]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express20, 4136–4148 (2012).
[CrossRef] [PubMed]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21, 1599–1605 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429, 67–120 (2006).
[CrossRef]

Phys. Rev. B (4)

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88, 035430 (2013).
[CrossRef]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61, 14095–14107 (2000).
[CrossRef]

W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen, and F. Wang, “Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation,” Phys. Rev. B82, 081408 (2010).
[CrossRef]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

Phys. Rev. Lett. (4)

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett.105, 127404 (2010).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95236802 (2005).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97, 187401 (2006).
[CrossRef] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Other (5)

B. E. A. Saleh and M. K. Teich, Fundamentals of Photonics, 2 ed. (John Wiley & Sons, Inc., 2007).

K. F. Renk, Basics of Laser Physics (Springer, 2012).
[CrossRef]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” in Photonics West, (SPIE, 2012), pp. 824212.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (CRC Press, 2003).

T. Südmeyer, D. J. H. C. Maas, and U. Keller, “Mode-Locked Semiconductor Disk Lasers,” in Semiconductor Disk Lasers, O.G. Okhotnikov, ed. (Wiley-VCH, 2010), pp. 213–261.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

DBR-GSAM design. Schematic zoom into the last mirror pairs with (a) no SiO2, (b) λ/12 (55 nm) SiO2, (c) λ/8 (83 nm) SiO2 and (d) λ/4 (165 nm) SiO2. The blue curve represents the normalized standing electric field intensity resulting from the refractive index profile, as a function of the vertical distance from the mirror, for the design wavelength λ =960 nm. A SLG is placed as the last layer. (e) (right axis) linear absorption and (left axis) field intensity enhancement at the SLG location corresponding to the DBRs without SiO2 (ξabs=0), a λ/12 layer of SiO2 (ξabs=0.5), a λ/8 layer (ξabs=1.3) and a λ/4 layer (ξabs=4). (f) (lines) calculated and (dots) experimental ξabs and absorption of the four designs as a function of wavelength.

Fig. 2
Fig. 2

Raman characterization and non-linear response. (a) Raman spectra of graphene on Cu and after transfer on the no-SiO2, λ/4 SiO2, λ/8 SiO2, λ/12 SiO2 devices. (b) Transmittance of the same graphene transferred on a quartz substrate, derived from the transmittance of transferred graphene on quartz divided by that of quartz. (c) Non-linear reflectivity of the λ/4 SiO2 sample (black markers) and fit assuming a 5% saturable and 5.1% non-saturable absorption (blue curve), resulting in a saturation fluence of 100 μJ/cm2. (d) Non-linear reflectivity of all GSAMs.

Fig. 3
Fig. 3

Laser setup. (a) Schematic of the VECSEL setup. OC: output coupler mirror. HR: high reflective folding mirror. GSAM: graphene saturable absorber. The VECSEL gain chip is placed as a folding mirror and pumped under a 45° angle. The total cavity length is 6 cm. (b) Picture of the laser setup. (c) Picture of the λ/8 GSAM. The SLG is clearly seen as shaded area, since the 83 nm SiO2 thickness gives a a high optical contrast in the visible range [42].

Fig. 4
Fig. 4

Mode-locking results. (a) (Blue line) second harmonic autocorrelation signal and (dashed red line) fit with the autocorrelation of an ideal sech2-shaped pulse, corresponding to a pulse duration of 466 fs. (b) Optical spectrum. (c) Microwave spectrum centered around the repetition rate of 2.5 GHz, measured with a 1 kHz resolution bandwidth (RBW). (d) Microwave spectrum measured from 0 to 13 GHz with RBW=300 kHz, showing the first 5 harmonic peaks of the repetition rate (frep).

Fig. 5
Fig. 5

Tuning results. Mode-locking with the λ/8 GSAM in VECSELs optimized for different emission wavelengths. An intra-cavity etalon is used, except for the two points at 935 and 949 nm. (a) Pulse duration and (b) average output power at different emission wavelengths. (c) Emission spectra for the 970 nm-VECSEL and average output power.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ξ ( z ) = | in ( z ) + out ( z ) | 2 | in ( z ) | 2 ,
out / in ( z ) = out / in 0 e i ( ω t ± k n z ) ,
ξ ( z ) = | in ( z ) in ( z ) | 2 | in ( z ) | 2 = | 2 i sin ( k n z ) | 2 = 4 sin 2 ( 2 π n air z λ ) ,
r in = n air n SiO 2 n air + n SiO 2 = 1 n SiO 2 1 + n SiO 2 and r out = r in ,
t in = 2 n air n air + n SiO 2 = 2 1 + n SiO 2 and t out = 2 n SiO 2 n air + n SiO 2 = 2 n SiO 2 1 + n SiO 2 .
air out = r in air in + t out SiO 2 out ,
SiO 2 in = t in air in + r out SiO 2 out
SiO 2 out = r mirror e 2 in SiO 2 k 0 d SiO 2 in .
SiO 2 in = t in 1 + r out e 2 in SiO 2 k 0 d
SiO 2 out = t in e 2 in SiO 2 k 0 d 1 + r out e 2 in SiO 2 k 0 d .
air out = r in + t out t in e 2 in SiO 2 k 0 d 1 + r out e 2 in SiO 2 k 0 d .
ξ ( d SiO 2 ) = | 1 4 n SiO 2 ( 1 + n SiO 2 ) 2 1 e 2 in SiO 2 k 0 d + n SiO 2 1 n SiO 2 + 1 + 1 n SiO 2 1 + n SiO 2 | 2
ξ abs ( d SiO 2 ) 4 1 + n SiO 2 2 cot 2 ( 2 π λ n SiO 2 d SiO 2 ) .
R ( F ) R lin R ns F F sat + ( F F sat ) 2 atanh [ F F sat + F ] + R ns ,

Metrics