Abstract

An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
    [CrossRef] [PubMed]
  3. C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
    [CrossRef]
  4. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010).
    [CrossRef] [PubMed]
  5. W. Zhang, L. Lina Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010).
    [CrossRef] [PubMed]
  6. Y. Tanaka and K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express19, 17462–17468 (2011).
    [CrossRef] [PubMed]
  7. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12, 402–406 (2011).
    [CrossRef] [PubMed]
  8. J. B. Black, D. Luo, and S. K. Mohanty, “Fiber-optic rotation of micro-scale structures enabled microfluidic actuation and self-scanning two-photon excitation,” Appl. Phys. Lett.101, 221105 (2012).
    [CrossRef]
  9. S. Valkai, L. Oroszi, and P. Ormos, “Optical tweezers with tips grown at the end of fibers by photopolymerization,” Appl. Opt.48, 2880–2883 (2009).
    [CrossRef] [PubMed]
  10. E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett.66, 1584–1586 (1995).
    [CrossRef]
  11. T. Numata, A. Takayanagi, Y. Otani, and N. Umeda, “Manipulation of metal nanoparticles using fiber-optic laser tweezers with a microspherical focusing lens,” Jpn. J. Appl. Phys.45, 359–363 (2006).
    [CrossRef]
  12. A. L. Barron, A. K. Kar, T. J. Aspray, A. J. Waddie, M. R. Aghizadeh, and H. T. Bookey, “Two dimensional interferometric optical trapping of multiple particles and Escherichia coli bacterial cells using a lensed multicore fiber,” Opt. Express21, 13199–13207 (2013).
    [CrossRef] [PubMed]
  13. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express14, 12510–12516 (2006).
    [CrossRef] [PubMed]
  14. Z. Liu, L. Wang, P. Liang, Y. Zhang, J. Yang, and L. Yuan, “Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment,” Opt. Lett.38, 2617–2620 (2013).
    [CrossRef] [PubMed]
  15. S. K. Mondal, S. S. Pal, and P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express20, 16180–16185 (2012).
    [CrossRef]
  16. M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, “Microdisplacement sensor using an optically trapped microprobe based on the interference scale,” Rev. Sci. Instrum.81, 015107 (2010).
    [CrossRef] [PubMed]
  17. K. Berg-Sørensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75, 594–612 (2004).
    [CrossRef]
  18. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16, 14561–14570 (2008).
    [CrossRef] [PubMed]
  19. J.-B. Decombe, W. Schwartz, C. Villard, H. Guillou, J. Chevrier, S. Huant, and J. Fick, “Living cell imaging by far-field fibered interference scanning optical microscopy,” Opt. Express19, 2702–2710 (2011).
    [CrossRef] [PubMed]
  20. N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
    [CrossRef]
  21. J. B. Decombe, J. F. Bryche, J. F. Motte, J. Chevrier, S. Huant, and J. Fick, “Transmission and reflection characteristics of metal-coated optical fiber tip pairs,” Appl. Opt.52, 6620–6625 (2013).
    [CrossRef] [PubMed]
  22. Y. Tanaka, A. Sanada, and K. Sasaki, “Nanoscale interference patterns of gap-mode multipolar plasmonic fields,” Sci. Rep.2, 764 (2012).
    [CrossRef] [PubMed]
  23. A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
    [CrossRef]
  24. B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
    [CrossRef] [PubMed]

2013 (4)

2012 (5)

S. K. Mondal, S. S. Pal, and P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express20, 16180–16185 (2012).
[CrossRef]

Y. Tanaka, A. Sanada, and K. Sasaki, “Nanoscale interference patterns of gap-mode multipolar plasmonic fields,” Sci. Rep.2, 764 (2012).
[CrossRef] [PubMed]

O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
[CrossRef] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

J. B. Black, D. Luo, and S. K. Mohanty, “Fiber-optic rotation of micro-scale structures enabled microfluidic actuation and self-scanning two-photon excitation,” Appl. Phys. Lett.101, 221105 (2012).
[CrossRef]

2011 (4)

2010 (3)

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, “Microdisplacement sensor using an optically trapped microprobe based on the interference scale,” Rev. Sci. Instrum.81, 015107 (2010).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010).
[CrossRef] [PubMed]

W. Zhang, L. Lina Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2006 (3)

T. Numata, A. Takayanagi, Y. Otani, and N. Umeda, “Manipulation of metal nanoparticles using fiber-optic laser tweezers with a microspherical focusing lens,” Jpn. J. Appl. Phys.45, 359–363 (2006).
[CrossRef]

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
[CrossRef]

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express14, 12510–12516 (2006).
[CrossRef] [PubMed]

2004 (1)

K. Berg-Sørensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75, 594–612 (2004).
[CrossRef]

1995 (1)

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett.66, 1584–1586 (1995).
[CrossRef]

1986 (1)

Aghizadeh, M. R.

Ahluwalia, B. S.

O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
[CrossRef] [PubMed]

Ashkin, A.

Aspray, T. J.

Barron, A. L.

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75, 594–612 (2004).
[CrossRef]

Bjorkholm, J. E.

Black, J. B.

J. B. Black, D. Luo, and S. K. Mohanty, “Fiber-optic rotation of micro-scale structures enabled microfluidic actuation and self-scanning two-photon excitation,” Appl. Phys. Lett.101, 221105 (2012).
[CrossRef]

Bluet, J.-M.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Boilot, J.-P.

A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
[CrossRef]

Boisron, O.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Bookey, H. T.

Bryche, J. F.

Canut, B.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Chevalier, N.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
[CrossRef]

Chevrier, J.

Chu, S.

Cluzel, B.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010).
[CrossRef] [PubMed]

Dantelle, G.

A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
[CrossRef]

Decanini, D.

A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
[CrossRef]

Decombe, J. B.

Decombe, J.-B.

Dellinger, J.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Dujardin, C.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Dziedzic, J. M.

Fick, J.

Flyvberg, H.

K. Berg-Sørensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75, 594–612 (2004).
[CrossRef]

Fornel, F. d.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Gacoin, T.

A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
[CrossRef]

Gibson, G. M.

Gordon, R.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12, 402–406 (2011).
[CrossRef] [PubMed]

Guillou, H.

Guo, C.

Hadji, E.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Haghiri-Gosnet, A.-M.

A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
[CrossRef]

Hayashi, T.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, “Microdisplacement sensor using an optically trapped microprobe based on the interference scale,” Rev. Sci. Instrum.81, 015107 (2010).
[CrossRef] [PubMed]

Helleso, O. G.

O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
[CrossRef] [PubMed]

Honegger, T.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Huant, S.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

J. B. Decombe, J. F. Bryche, J. F. Motte, J. Chevrier, S. Huant, and J. Fick, “Transmission and reflection characteristics of metal-coated optical fiber tip pairs,” Appl. Opt.52, 6620–6625 (2013).
[CrossRef] [PubMed]

J.-B. Decombe, W. Schwartz, C. Villard, H. Guillou, J. Chevrier, S. Huant, and J. Fick, “Living cell imaging by far-field fibered interference scanning optical microscopy,” Opt. Express19, 2702–2710 (2011).
[CrossRef] [PubMed]

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
[CrossRef]

Kapur, P.

Kar, A. K.

Karrai, K.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
[CrossRef]

Keen, S.

Leach, J.

Ledoux, G.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Liang, P.

Lina Huang, L.

W. Zhang, L. Lina Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010).
[CrossRef] [PubMed]

Liu, Z.

Lovhaugen, P.

O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
[CrossRef] [PubMed]

Luo, D.

J. B. Black, D. Luo, and S. K. Mohanty, “Fiber-optic rotation of micro-scale structures enabled microfluidic actuation and self-scanning two-photon excitation,” Appl. Phys. Lett.101, 221105 (2012).
[CrossRef]

Lyons, E. R.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett.66, 1584–1586 (1995).
[CrossRef]

Martin, O. J. F.

W. Zhang, L. Lina Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010).
[CrossRef] [PubMed]

Masenelli, B.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Mélinon, P.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Michihata, M.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, “Microdisplacement sensor using an optically trapped microprobe based on the interference scale,” Rev. Sci. Instrum.81, 015107 (2010).
[CrossRef] [PubMed]

Mohanty, S. K.

J. B. Black, D. Luo, and S. K. Mohanty, “Fiber-optic rotation of micro-scale structures enabled microfluidic actuation and self-scanning two-photon excitation,” Appl. Phys. Lett.101, 221105 (2012).
[CrossRef]

Mollet, O.

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Mondal, S. K.

Motte, J. F.

J. B. Decombe, J. F. Bryche, J. F. Motte, J. Chevrier, S. Huant, and J. Fick, “Transmission and reflection characteristics of metal-coated optical fiber tip pairs,” Appl. Opt.52, 6620–6625 (2013).
[CrossRef] [PubMed]

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
[CrossRef]

Nakai, D.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, “Microdisplacement sensor using an optically trapped microprobe based on the interference scale,” Rev. Sci. Instrum.81, 015107 (2010).
[CrossRef] [PubMed]

Numata, T.

T. Numata, A. Takayanagi, Y. Otani, and N. Umeda, “Manipulation of metal nanoparticles using fiber-optic laser tweezers with a microspherical focusing lens,” Jpn. J. Appl. Phys.45, 359–363 (2006).
[CrossRef]

Ormos, P.

Oroszi, L.

Otani, Y.

T. Numata, A. Takayanagi, Y. Otani, and N. Umeda, “Manipulation of metal nanoparticles using fiber-optic laser tweezers with a microspherical focusing lens,” Jpn. J. Appl. Phys.45, 359–363 (2006).
[CrossRef]

Padgett, M. J.

Pal, S. S.

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12, 402–406 (2011).
[CrossRef] [PubMed]

Peyrade, D.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Picard, E.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Renaut, C.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

Reveaux, A.

A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
[CrossRef]

Sanada, A.

Y. Tanaka, A. Sanada, and K. Sasaki, “Nanoscale interference patterns of gap-mode multipolar plasmonic fields,” Sci. Rep.2, 764 (2012).
[CrossRef] [PubMed]

Santschi, C.

W. Zhang, L. Lina Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010).
[CrossRef] [PubMed]

Sasaki, K.

Y. Tanaka, A. Sanada, and K. Sasaki, “Nanoscale interference patterns of gap-mode multipolar plasmonic fields,” Sci. Rep.2, 764 (2012).
[CrossRef] [PubMed]

Y. Tanaka and K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express19, 17462–17468 (2011).
[CrossRef] [PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010).
[CrossRef] [PubMed]

Schwartz, W.

Sonek, G. J.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett.66, 1584–1586 (1995).
[CrossRef]

Sonnefraud, Y.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
[CrossRef]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010).
[CrossRef] [PubMed]

Subramanian, A. Z.

O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
[CrossRef] [PubMed]

Takaya, Y.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, “Microdisplacement sensor using an optically trapped microprobe based on the interference scale,” Rev. Sci. Instrum.81, 015107 (2010).
[CrossRef] [PubMed]

Takayanagi, A.

T. Numata, A. Takayanagi, Y. Otani, and N. Umeda, “Manipulation of metal nanoparticles using fiber-optic laser tweezers with a microspherical focusing lens,” Jpn. J. Appl. Phys.45, 359–363 (2006).
[CrossRef]

Tanaka, Y.

Y. Tanaka, A. Sanada, and K. Sasaki, “Nanoscale interference patterns of gap-mode multipolar plasmonic fields,” Sci. Rep.2, 764 (2012).
[CrossRef] [PubMed]

Y. Tanaka and K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express19, 17462–17468 (2011).
[CrossRef] [PubMed]

Umeda, N.

T. Numata, A. Takayanagi, Y. Otani, and N. Umeda, “Manipulation of metal nanoparticles using fiber-optic laser tweezers with a microspherical focusing lens,” Jpn. J. Appl. Phys.45, 359–363 (2006).
[CrossRef]

Valkai, S.

Villard, C.

Waddie, A. J.

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010).
[CrossRef] [PubMed]

Wang, L.

Wilkinson, J. S.

O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
[CrossRef] [PubMed]

Wright, A. J.

Yang, J.

Yuan, L.

Zhang, W.

W. Zhang, L. Lina Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010).
[CrossRef] [PubMed]

Zhang, Y.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. d. Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett.100, 101103 (2012).
[CrossRef]

J. B. Black, D. Luo, and S. K. Mohanty, “Fiber-optic rotation of micro-scale structures enabled microfluidic actuation and self-scanning two-photon excitation,” Appl. Phys. Lett.101, 221105 (2012).
[CrossRef]

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett.66, 1584–1586 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Numata, A. Takayanagi, Y. Otani, and N. Umeda, “Manipulation of metal nanoparticles using fiber-optic laser tweezers with a microspherical focusing lens,” Jpn. J. Appl. Phys.45, 359–363 (2006).
[CrossRef]

Lab Chip (1)

O. G. Helleso, P. Lovhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip12, 3436–3440 (2012).
[CrossRef] [PubMed]

Nano Lett. (3)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010).
[CrossRef] [PubMed]

W. Zhang, L. Lina Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010).
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12, 402–406 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

B. Masenelli, O. Mollet, O. Boisron, B. Canut, G. Ledoux, J.-M. Bluet, P. Mélinon, C. Dujardin, and S. Huant, “YAG:Ce nanoparticle lightsources,” Nanotechnology24, 165703 (2013).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (1)

A. Reveaux, G. Dantelle, D. Decanini, A.-M. Haghiri-Gosnet, T. Gacoin, and J.-P. Boilot, “Synthesis of YAG:Ce/TiO2 nanocomposite films,” Opt. Mater.33, 1124–1127 (2011).
[CrossRef]

Rev. Sci. Instrum. (3)

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, “Microdisplacement sensor using an optically trapped microprobe based on the interference scale,” Rev. Sci. Instrum.81, 015107 (2010).
[CrossRef] [PubMed]

K. Berg-Sørensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75, 594–612 (2004).
[CrossRef]

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum.77, 063704 (2006).
[CrossRef]

Sci. Rep. (1)

Y. Tanaka, A. Sanada, and K. Sasaki, “Nanoscale interference patterns of gap-mode multipolar plasmonic fields,” Sci. Rep.2, 764 (2012).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: AVI (1228 KB)     
» Media 2: AVI (2549 KB)     
» Media 3: AVI (3745 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scanning electron microscope images of an etched fiber tip.

Fig. 2
Fig. 2

Scheme of the experimental set-up.

Fig. 3
Fig. 3

Transmission spot width/waist (a) and intensity (b) as a function of fiber tip-to-tip distance. Insert: transverse transmission intensity map in air (d = 1 μm).

Fig. 4
Fig. 4

Optical microscope images of a trapped 1 μm polystyrene sphere. (a) Laser off. (b) Laser on (9 mW) ( Media 1).

Fig. 5
Fig. 5

(a) Evolution of particle position (blue dots) and velocity (red). The line corresponds to the calculated velocity curve. (b) Optical force as a function of particle position for 4 different laser powers. The inset shows the optical force as a function of laser intensity at a particle position of 0 μm .

Fig. 6
Fig. 6

Trapping of one (a) and two (b) spheres with 2 fiber nano-tips ( Media 2) (I = 6 mW, d = 17 μm). (c)–(d) Control of the particle position by modifying the relative light intensities injected in the two facing nano-tips.

Fig. 7
Fig. 7

Back signal as a function of the trap state: (a) zero, two, and one trapped particle. (b) No particle (red), stable trapping (green), and metastable trapping (blue). (b) Fast Fourier Transform of these 3 states (lines are Lorentzian best fits). (d) Comparison between back signal (red) and particle position (blue) for metastable particle trapping ( Media 3).

Fig. 8
Fig. 8

Power spectra (a) and autocorrelation (b) of transversal position of a trapped particle for different light intensities (d = 11.5μm). Lines are best fits to the experimental data. Insert: plot of the particle position fluctuations.

Fig. 9
Fig. 9

Transverse position distribution of the trapped particle for different light intensities (a) and fiber tip-to-tip distances (b) and the corresponding trap potentials (c),(d).

Fig. 10
Fig. 10

Trap stiffness along transversal and longitudinal directions as a function of laser power at the end of each fibers (a) and as a function of fiber tip-to-tip distance (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F opt + F stokes = m v ˙
m x ¨ ( t ) + γ 0 x ˙ ( t ) + κ x ( t ) = ( 2 k B T γ 0 ) 1 / 2 ξ ( t )
P k = 2 k b T γ 0 ( f c 2 + f k 2 )
1 2 k B T = 1 2 κ x 2 .
P ( x ) = 1 Z e U ( x ) k B T

Metrics