Abstract

Two all fiber-based laser systems are demonstrated to achieve high energy and high average power femtosecond pulsed outputs at wavelength of 1 µm. In the high energy laser system, a pulse energy of 1.05 mJ (0.85 mJ after pulse compressor) at 100 kHz repetition rate has been realized by a Yb-doped ultra large-core single-mode photonic crystal fiber (PCF) rod amplifier, seeded with a 50 µJ fiber laser. The pulse duration is 705 fs. In the high average power experiment, a large mode area (LMA) fiber has been used in the final stage amplifier, seeded with a 50 W mode locked fiber laser. The system is running at a repetition rate of 69 MHz producing 1052 W of average power before compressor. After pulse compression, a pulse duration of 800 fs was measured.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  2. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, Th. Gabler, Ch. Wirth, Th. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  3. A. Klenke, E. Seise, S. Demmler, J. Rothhardt, S. Breitkopf, J. Limpert, and A. Tünnermann, “Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy,” Opt. Express19(24), 24280–24285 (2011).
    [CrossRef] [PubMed]
  4. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett.38(13), 2283–2285 (2013).
    [CrossRef] [PubMed]
  5. Z. Liu, L. Shah, I. Hartl, G. C. Cho, and M. E. Fermann, “High-energy fiber chirped-pulse amplification system based on cubicons,” Proceedings of the Conference on Lasers and Electro-Optics (Baltimore, May 2005), paper CThG4.df.
    [CrossRef]
  6. P. Wan, L. M. Yang, and J. Liu, “156 micro-J Ultrafast Thulium-Doped Fiber Laser,” SPIE Photonics West 8601–117, February 2–7, 2013, San Francisco, CA, USA.
    [CrossRef]
  7. J. Liu, H. Huang, and L. Yang, “High Energy Ultrafast Fiber Lasers and Applications,”(Invited Paper) 2012 OSA Laser and Tera-Hertz Science and Technology (LTST) meeting, November 1–2, 2012, Wuhan, China.
    [CrossRef]
  8. A. Galvanauskas, “Mode-scalable, fiber-based, chirped-pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron.7(4), 504–517 (2001).
    [CrossRef]
  9. F. O. Ilday, H. Lim, J. R. Buckley, and F. W. Wise, “Practical all-fiber source of high-power, 120-fs pulses at 1 micrometre,” Opt. Lett.28(15), 1362–1364 (2003).
    [CrossRef] [PubMed]
  10. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13(12), 4717–4722 (2005).
    [CrossRef] [PubMed]
  11. J. Liu and L. Yang, “Ns and fs Fiber Lasers,” (Invited Talk), FILAS 2011, February 16–18, 2011, Turkey.
    [CrossRef]
  12. http://www.polaronyxlaser.com/
  13. J. Liu, “Nonlinear polarization pulse shaping model locked fiber laser at one micron with photonic crystal (PC), photonic bandgap (PBG), or higher order mode (HOM) fiber,” PolarOnyx Inc., US patent 7,529,278 B2(2009).
  14. J. Liu and J. Xia, “All fiber laser solution for spectral broadening and pulse stretching in a chirped pulse amplification fiber system,” PolarOnyx Inc., US patent 7,440,173 (2008).
  15. J. Liu, “Nonlinear polarization pulse shaping mode locked fiber laser at one micron,” PolarOnyx Inc., US patent 7,526,003 (2009).

2013 (1)

2011 (1)

2010 (1)

2005 (2)

2003 (1)

2001 (1)

A. Galvanauskas, “Mode-scalable, fiber-based, chirped-pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron.7(4), 504–517 (2001).
[CrossRef]

Andersen, T. V.

Breitkopf, S.

Broeng, J.

Buckley, J. R.

Cho, G.

Deguil-Robin, N.

Demmler, S.

Eidam, T.

Fermann, M.

Gabler, Th.

Galvanauskas, A.

A. Galvanauskas, “Mode-scalable, fiber-based, chirped-pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron.7(4), 504–517 (2001).
[CrossRef]

Gottschall, T.

Hädrich, S.

Hanf, S.

Hartl, I.

Ilday, F. O.

Imeshev, G.

Jakobsen, C.

Kienel, M.

Klenke, A.

Liem, A.

Lim, H.

Limpert, J.

Liu, Z.

Manek-Hönninger, I.

Nolte, S.

Petersson, A.

Röser, F.

Rothhardt, J.

Salin, F.

Schreiber, T.

Schreiber, Th.

Seise, E.

Shah, L.

Tünnermann, A.

Wirth, Ch.

Wise, F. W.

Zellmer, H.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, “Mode-scalable, fiber-based, chirped-pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron.7(4), 504–517 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (8)

Z. Liu, L. Shah, I. Hartl, G. C. Cho, and M. E. Fermann, “High-energy fiber chirped-pulse amplification system based on cubicons,” Proceedings of the Conference on Lasers and Electro-Optics (Baltimore, May 2005), paper CThG4.df.
[CrossRef]

P. Wan, L. M. Yang, and J. Liu, “156 micro-J Ultrafast Thulium-Doped Fiber Laser,” SPIE Photonics West 8601–117, February 2–7, 2013, San Francisco, CA, USA.
[CrossRef]

J. Liu, H. Huang, and L. Yang, “High Energy Ultrafast Fiber Lasers and Applications,”(Invited Paper) 2012 OSA Laser and Tera-Hertz Science and Technology (LTST) meeting, November 1–2, 2012, Wuhan, China.
[CrossRef]

J. Liu and L. Yang, “Ns and fs Fiber Lasers,” (Invited Talk), FILAS 2011, February 16–18, 2011, Turkey.
[CrossRef]

http://www.polaronyxlaser.com/

J. Liu, “Nonlinear polarization pulse shaping model locked fiber laser at one micron with photonic crystal (PC), photonic bandgap (PBG), or higher order mode (HOM) fiber,” PolarOnyx Inc., US patent 7,529,278 B2(2009).

J. Liu and J. Xia, “All fiber laser solution for spectral broadening and pulse stretching in a chirped pulse amplification fiber system,” PolarOnyx Inc., US patent 7,440,173 (2008).

J. Liu, “Nonlinear polarization pulse shaping mode locked fiber laser at one micron,” PolarOnyx Inc., US patent 7,526,003 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Systematic diagram of 1 µm high energy fiber laser system. DM:Dichroic Mirror; ISO:Isolator.

Fig. 2
Fig. 2

(a) Output power and (b) Pulse energy as functions of pump power at various repetition rates.

Fig. 3
Fig. 3

Spectra of seeding laser and amplified output at various energy levels.

Fig. 4
Fig. 4

M2 measurements: Beam diameters as functions of distance from laser beam waists.

Fig. 5
Fig. 5

(a) Autocorrelation trace of the output beam with amplified pulse energy of 1.05 mJ; (b) Output pulse durations at various amplified energy levels.

Fig. 6
Fig. 6

Systematic diagram of 1 µm femtosecond kW fiber laser system.

Fig. 7
Fig. 7

Output power as function of pump power.

Fig. 8
Fig. 8

(a) Spectra of seeding laser and amplified output at various power levels; (b) Autocorrelation trace of the output beam with various amplified average power.

Fig. 9
Fig. 9

Screen shot for M2 measurements: Beam diameters as functions of distance from laser beam waists. Insert is an image of 2D beam profile.

Metrics