Abstract

As an application of organic semiconductor distributed feedback (DFB) lasers we demonstrate their use as excitation sources in Raman spectroscopy. We employed an efficient small molecule blend, a high quality resonator and a novel encapsulation method resulting in an improved laser output power, a reduced laser line width and an enhanced power stability. Based on theses advances, Raman spectroscopy on selected substances was enabled. Raman spectra of sulfur and cadmium sulfide are presented and compared with the ones excited by a helium-neon laser. We also fabricated a spectrally tunable organic semiconductor DFB laser to optimize the Raman signals for a given optical filter configuration.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature121(3048), 501–502 (1928).
    [CrossRef]
  2. G. Landsberg and L. Mandelstam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwissenschaften16(28), 557–558 (1928).
    [CrossRef]
  3. J. H. Giles, D. A. Gilmore, and M. B. Denton, “Quantitative analysis using Raman spectroscopy without spectral standardization,” J. Raman Spectrosc.30(9), 767–771 (1999).
    [CrossRef]
  4. O. Svensson, M. Josefson, and F. W. Langkilde, “Reaction monitoring using Raman spectroscopy and chemometrics,” Chemom. Intell. Lab. Syst.49(1), 49–66 (1999).
    [CrossRef]
  5. A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
    [CrossRef]
  6. T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon33(11), 1561–1565 (1995).
    [CrossRef]
  7. S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A.162(1), 39–64 (1997).
    [CrossRef]
  8. U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005).
    [CrossRef]
  9. I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25(1), 13–23 (1994).
    [CrossRef]
  10. E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997).
    [CrossRef]
  11. L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
    [CrossRef] [PubMed]
  12. A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
    [CrossRef] [PubMed]
  13. F. Adar, R. Geiger, and J. Noonan, “Raman spectroscopy for process/quality control,” Appl. Spectrosc. Rev.32(1-2), 45–101 (1997).
    [CrossRef]
  14. J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
    [CrossRef]
  15. G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978).
    [CrossRef]
  16. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
    [CrossRef] [PubMed]
  17. J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
    [CrossRef] [PubMed]
  18. T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
    [CrossRef]
  19. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (CRC, 2001).
  20. D. L. Andrews and A. A. Demidov, An Introduction to Laser Spectroscopy (Plenum, 1995).
  21. F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
    [CrossRef]
  22. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  23. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett.27(14), 1220–1222 (2002).
    [CrossRef] [PubMed]
  24. T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B99(1-2), 47–51 (2010).
    [CrossRef]
  25. S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
    [CrossRef]
  26. V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
    [CrossRef]
  27. C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
    [CrossRef] [PubMed]
  28. O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).
  29. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett.26(9), 593–595 (2001).
    [CrossRef] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).
  31. A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
    [CrossRef]
  32. S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
    [CrossRef]
  33. D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009).
    [CrossRef] [PubMed]
  34. S. N. White, “Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals,” Chem. Geol.259(3-4), 240–252 (2009).
    [CrossRef]
  35. S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
    [CrossRef]
  36. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals,” Phys. Rev.181(3), 1351–1363 (1969).
    [CrossRef]
  37. M. Abdulkhadar and B. Thomas, Nanostruct. “Study of raman spectra of nanoparticles of CdS and ZnS,” Mater.5, 289–298 (1995).
  38. F. X. Gu, H. K. Yu, W. Fang, and L. M. Tong, “Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping,” Opt. Express20(8), 8667–8674 (2012).
    [CrossRef] [PubMed]
  39. R. T. Downs, (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03–13.

2012 (2)

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

F. X. Gu, H. K. Yu, W. Fang, and L. M. Tong, “Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping,” Opt. Express20(8), 8667–8674 (2012).
[CrossRef] [PubMed]

2010 (5)

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
[CrossRef] [PubMed]

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B99(1-2), 47–51 (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

2009 (3)

D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009).
[CrossRef] [PubMed]

S. N. White, “Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals,” Chem. Geol.259(3-4), 240–252 (2009).
[CrossRef]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

2007 (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

2006 (1)

S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
[CrossRef]

2005 (1)

U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005).
[CrossRef]

2003 (1)

J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
[CrossRef]

2002 (2)

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett.27(14), 1220–1222 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (2)

J. H. Giles, D. A. Gilmore, and M. B. Denton, “Quantitative analysis using Raman spectroscopy without spectral standardization,” J. Raman Spectrosc.30(9), 767–771 (1999).
[CrossRef]

O. Svensson, M. Josefson, and F. W. Langkilde, “Reaction monitoring using Raman spectroscopy and chemometrics,” Chemom. Intell. Lab. Syst.49(1), 49–66 (1999).
[CrossRef]

1998 (1)

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

1997 (3)

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A.162(1), 39–64 (1997).
[CrossRef]

E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997).
[CrossRef]

F. Adar, R. Geiger, and J. Noonan, “Raman spectroscopy for process/quality control,” Appl. Spectrosc. Rev.32(1-2), 45–101 (1997).
[CrossRef]

1996 (1)

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

1995 (2)

M. Abdulkhadar and B. Thomas, Nanostruct. “Study of raman spectra of nanoparticles of CdS and ZnS,” Mater.5, 289–298 (1995).

T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon33(11), 1561–1565 (1995).
[CrossRef]

1994 (1)

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25(1), 13–23 (1994).
[CrossRef]

1992 (1)

A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
[CrossRef]

1990 (1)

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).

1978 (1)

G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978).
[CrossRef]

1969 (1)

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals,” Phys. Rev.181(3), 1351–1363 (1969).
[CrossRef]

1968 (1)

A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
[CrossRef]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

1928 (2)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature121(3048), 501–502 (1928).
[CrossRef]

G. Landsberg and L. Mandelstam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwissenschaften16(28), 557–558 (1928).
[CrossRef]

Abdulkhadar, M.

M. Abdulkhadar and B. Thomas, Nanostruct. “Study of raman spectra of nanoparticles of CdS and ZnS,” Mater.5, 289–298 (1995).

Abstreiter, G.

G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978).
[CrossRef]

Adar, F.

F. Adar, R. Geiger, and J. Noonan, “Raman spectroscopy for process/quality control,” Appl. Spectrosc. Rev.32(1-2), 45–101 (1997).
[CrossRef]

Andersson, M.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Andrade, J. M.

J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
[CrossRef]

Arguello, C. A.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals,” Phys. Rev.181(3), 1351–1363 (1969).
[CrossRef]

Baldo, M.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Barr, H.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Barry, B. W.

E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997).
[CrossRef]

Bauer, M.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Bauser, E.

G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978).
[CrossRef]

Berleb, S.

Bocklitz, T.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Borgström, M. T.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Brewer, P. G.

S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
[CrossRef]

Bruining, H. A.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Brütting, W.

Bulovic, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Burrows, P.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Butrimovich, O. V.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).

Casado, J.

T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon33(11), 1561–1565 (1995).
[CrossRef]

Chen, J. N.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Choo-Smith, L.-P.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Chourpa, I.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25(1), 13–23 (1994).
[CrossRef]

Christiansen, M. B.

Conache, G.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

De la Guardia, M.

J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
[CrossRef]

Dehm, S.

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

Denton, M. B.

J. H. Giles, D. A. Gilmore, and M. B. Denton, “Quantitative analysis using Raman spectroscopy without spectral standardization,” J. Raman Spectrosc.30(9), 767–771 (1999).
[CrossRef]

Diaz-Garcia, M.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Dresselhaus, G.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
[CrossRef] [PubMed]

Dresselhaus, M. S.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
[CrossRef] [PubMed]

Dunk, R. M.

S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
[CrossRef]

Edwards, H. G. M.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997).
[CrossRef]

Endtz, H. P.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Fang, W.

Feldmann, J.

Fischer, A.

G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978).
[CrossRef]

Foerster, M.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Forrest, S.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Freeman, J. J.

S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
[CrossRef]

Garriques, S.

J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
[CrossRef]

Geiger, R.

F. Adar, R. Geiger, and J. Noonan, “Raman spectroscopy for process/quality control,” Appl. Spectrosc. Rev.32(1-2), 45–101 (1997).
[CrossRef]

Geyer, U.

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

Giles, J. H.

J. H. Giles, D. A. Gilmore, and M. B. Denton, “Quantitative analysis using Raman spectroscopy without spectral standardization,” J. Raman Spectrosc.30(9), 767–771 (1999).
[CrossRef]

Gilmore, D. A.

J. H. Giles, D. A. Gilmore, and M. B. Denton, “Quantitative analysis using Raman spectroscopy without spectral standardization,” J. Raman Spectrosc.30(9), 767–771 (1999).
[CrossRef]

Gombert, A.

Gomez-Carracedo, M.

J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
[CrossRef]

Gray, S. M.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Gros, O.

D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009).
[CrossRef] [PubMed]

Gu, F. X.

Håkanson, U.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Harima, H.

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A.162(1), 39–64 (1997).
[CrossRef]

Heeger, A.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Heule, F.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Hide, F.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Hild, S.

U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005).
[CrossRef]

Himmel, D.

D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009).
[CrossRef] [PubMed]

Hofmann, M.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
[CrossRef] [PubMed]

Hollricher, O.

U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005).
[CrossRef]

Ibach, W.

U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005).
[CrossRef]

Jawhari, T.

T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon33(11), 1561–1565 (1995).
[CrossRef]

Jorio, A.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
[CrossRef] [PubMed]

Josefson, M.

O. Svensson, M. Josefson, and F. W. Langkilde, “Reaction monitoring using Raman spectroscopy and chemometrics,” Chemom. Intell. Lab. Syst.49(1), 49–66 (1999).
[CrossRef]

Khalfin, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Kiehntopf, M.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Klinkhammer, S.

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B99(1-2), 47–51 (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

Kojima, N.

A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
[CrossRef]

Kolew, A.

Konagai, M.

A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
[CrossRef]

Kozlov, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Krishnan, K. S.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature121(3048), 501–502 (1928).
[CrossRef]

Kristensen, A.

Kros, J. M.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Landsberg, G.

G. Landsberg and L. Mandelstam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwissenschaften16(28), 557–558 (1928).
[CrossRef]

Langkilde, F. W.

O. Svensson, M. Josefson, and F. W. Langkilde, “Reaction monitoring using Raman spectroscopy and chemometrics,” Chemom. Intell. Lab. Syst.49(1), 49–66 (1999).
[CrossRef]

Lawson, E. E.

E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997).
[CrossRef]

Lemmer, U.

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B99(1-2), 47–51 (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett.26(9), 593–595 (2001).
[CrossRef] [PubMed]

Lugovskii, A. P.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).

Maeda, M.

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

Mandelstam, L.

G. Landsberg and L. Mandelstam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwissenschaften16(28), 557–558 (1928).
[CrossRef]

Manfait, M.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25(1), 13–23 (1994).
[CrossRef]

Mansot, J.-L.

D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009).
[CrossRef] [PubMed]

Mappes, T.

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

Maurin, L. C.

D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009).
[CrossRef] [PubMed]

Miyamoto, S.

Mückl, A. G.

Nabiev, I.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25(1), 13–23 (1994).
[CrossRef]

Nakashima, S.

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A.162(1), 39–64 (1997).
[CrossRef]

Neugebauer, U.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Noonan, J.

F. Adar, R. Geiger, and J. Noonan, “Raman spectroscopy for process/quality control,” Appl. Spectrosc. Rev.32(1-2), 45–101 (1997).
[CrossRef]

Okamoto, T.

A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
[CrossRef]

Oki, Y.

Parthasarathy, G.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Peltzer, E. T.

S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
[CrossRef]

Pistol, M. E.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Ploog, K.

G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978).
[CrossRef]

Popp, J.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Porto, S. P. S.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals,” Phys. Rev.181(3), 1351–1363 (1969).
[CrossRef]

Prada, D.

J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
[CrossRef]

Ptashnikov, Y. L.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).

Puppels, G. J.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Raman, C. V.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature121(3048), 501–502 (1928).
[CrossRef]

Ramoji, A.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Riechel, S.

Robinson, J. S.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Roid, A.

T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon33(11), 1561–1565 (1995).
[CrossRef]

Rousseau, D. L.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals,” Phys. Rev.181(3), 1351–1363 (1969).
[CrossRef]

Saito, R.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
[CrossRef] [PubMed]

Samtsov, M. P.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).

Samuel, I. D. W.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Samuelson, L.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Schmidt, U.

U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005).
[CrossRef]

Schwartz, B.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Svensson, O.

O. Svensson, M. Josefson, and F. W. Langkilde, “Reaction monitoring using Raman spectroscopy and chemometrics,” Chemom. Intell. Lab. Syst.49(1), 49–66 (1999).
[CrossRef]

Takahashi, K.

A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
[CrossRef]

Thomas, B.

M. Abdulkhadar and B. Thomas, Nanostruct. “Study of raman spectra of nanoparticles of CdS and ZnS,” Mater.5, 289–298 (1995).

Thompson, M.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Tong, L. M.

Turnbull, G. A.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Vannahme, C.

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

Vasa, N. J.

Voropai, E. S.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).

Ward, A. T.

A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
[CrossRef]

White, S. N.

S. N. White, “Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals,” Chem. Geol.259(3-4), 240–252 (2009).
[CrossRef]

S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
[CrossRef]

Williams, A. C.

E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997).
[CrossRef]

Wittwer, V.

Woggon, T.

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
[CrossRef]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B99(1-2), 47–51 (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

Xu, H.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Xu, H. Q.

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Yamada, A.

A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
[CrossRef]

You, Y.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Yu, H. K.

Anal. Chem. (1)

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003).
[CrossRef]

Appl. Phys. (Berl.) (1)

G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978).
[CrossRef]

Appl. Phys. B (2)

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009).
[CrossRef]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B99(1-2), 47–51 (2010).
[CrossRef]

Appl. Spectrosc. Rev. (1)

F. Adar, R. Geiger, and J. Noonan, “Raman spectroscopy for process/quality control,” Appl. Spectrosc. Rev.32(1-2), 45–101 (1997).
[CrossRef]

Biol. Cell (1)

D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009).
[CrossRef] [PubMed]

Biopolymers (1)

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002).
[CrossRef] [PubMed]

Carbon (1)

T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon33(11), 1561–1565 (1995).
[CrossRef]

Chem. Geol. (1)

S. N. White, “Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals,” Chem. Geol.259(3-4), 240–252 (2009).
[CrossRef]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Chemom. Intell. Lab. Syst. (1)

O. Svensson, M. Josefson, and F. W. Langkilde, “Reaction monitoring using Raman spectroscopy and chemometrics,” Chemom. Intell. Lab. Syst.49(1), 49–66 (1999).
[CrossRef]

Geochem. Geophys. Geosyst. (1)

S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006).
[CrossRef]

J. Appl. Phys. (1)

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

J. Phys. Chem. (1)

A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
[CrossRef]

J. Raman Spectrosc. (3)

J. H. Giles, D. A. Gilmore, and M. B. Denton, “Quantitative analysis using Raman spectroscopy without spectral standardization,” J. Raman Spectrosc.30(9), 767–771 (1999).
[CrossRef]

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25(1), 13–23 (1994).
[CrossRef]

E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992).
[CrossRef]

Macromol. Symp. (1)

U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005).
[CrossRef]

Mater. (1)

M. Abdulkhadar and B. Thomas, Nanostruct. “Study of raman spectra of nanoparticles of CdS and ZnS,” Mater.5, 289–298 (1995).

Nano Lett. (2)

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010).
[CrossRef] [PubMed]

J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010).
[CrossRef] [PubMed]

Nature (2)

T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature121(3048), 501–502 (1928).
[CrossRef]

Naturwissenschaften (1)

G. Landsberg and L. Mandelstam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwissenschaften16(28), 557–558 (1928).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Spectrosc. (1)

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).

Phys. Rev. (1)

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals,” Phys. Rev.181(3), 1351–1363 (1969).
[CrossRef]

Phys. Status Solidi A. (1)

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A.162(1), 39–64 (1997).
[CrossRef]

Proc. SPIE (1)

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010).
[CrossRef]

Science (1)

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

R. T. Downs, (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03–13.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (CRC, 2001).

D. L. Andrews and A. A. Demidov, An Introduction to Laser Spectroscopy (Plenum, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Photograph of an encapsulated DFB-OSL when pumped by the ultraviolet pump laser (left) and laser emission beam profile before coupling into the Raman measurement setup (right). (b) Laser spectra measured at different pump pulse energies. (c) Input-output characteristic at a wavelength of 629.3 nm for lower pump energy level and higher pump energy level (inset).

Fig. 2
Fig. 2

(a) Scheme of the Raman spectroscopy setup. Inset top: Laser beam profiles of the DFB-OSL and the He-Ne laser at the position of sample. Inset below: The transmission spectra of the dichroic (RazorEdge) beam splitter and the longpass filter. (b) Degradation characteristics of the encapsulated Alq3:DCM DFB laser under a pump pulse energy of 3.2 µJ pulse−1.

Fig. 3
Fig. 3

(a) Raman spectra of sulfur (S8) under varying excitation power of the DFB-OSL. (b) Comparison of the sulfur (S8) Raman spectra excited by a DFB-OSL with a laser emission at 629.3 nm and by a He-Ne laser. (c) The growing signal intensity of Raman shift at 472 Δcm−1 with the increasing laser excitation power.

Fig. 4
Fig. 4

(a) Photograph of an encapsulated spectrally tunable DFB-OSL with a continuously changing film thickness of Alq3:DCM fabricated by rotating shadow mask evaporation. (b) Spatially resolved laser wavelengths of the laser sample. (c) Comparison of the sulfur (S8) Raman spectra excited by the organic DFB laser with a laser wavelength of 633 nm and the He-Ne laser.

Fig. 5
Fig. 5

Raman spectra of cadmium sulfide excited by the organic DFB laser with a laser wavelength of 629.3 nm and the He-Ne laser in comparison with the Raman database.

Metrics