Abstract

Recently, we have theoretically demonstrated that optically injected microdisk lasers can be tuned in a class I excitable regime, where they are sensitive to both inhibitory and excitatory external input pulses. In this paper, we propose, using simulations, a topology that allows the disks to react on excitations from other disks. Phase tuning of the intermediate connections allows to control the disk response. Additionally, we investigate the sensitivity of the disk circuit to deviations in driving current and locking signal wavelength detuning. Using state-of-the-art fabrication techniques for microdisk laser, the standard deviation of the lasing wavelength is still about one order of magnitude too large. Therefore, compensation techniques, such as wavelength tuning by heating, are necessary.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural Networks10, 1659–1671 (1997).
    [CrossRef]
  2. S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
    [CrossRef]
  3. W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
    [CrossRef]
  4. S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88, 063901 (2002).
    [CrossRef] [PubMed]
  5. D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
    [CrossRef] [PubMed]
  6. A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Appl. Phys. Lett.100, 103703 (2012).
    [CrossRef]
  7. S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Opt. Lett.36, 4476–4478 (2011).
    [CrossRef] [PubMed]
  8. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
    [CrossRef]
  9. A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
    [CrossRef] [PubMed]
  10. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express20, 20292–20308 (2012).
    [CrossRef] [PubMed]
  11. M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).
  12. J. Van Campenhout, P. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “Design and optimization of electrically injected InP-based microdisk lasers integrated on and coupled to a SOI waveguide circuit,” J. Lightwave Technol.26, 52–63 (2008).
    [CrossRef]
  13. Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE (IEEE, 2009), pp. 503–504.
    [CrossRef]
  14. K. Alexander, T. Van Vaerenbergh, M. Fiers, P. Mechet, J. Dambre, and P. Bienstman, “Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response,” Opt. Express21, 20292–20308 (2013).
    [CrossRef]
  15. M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
    [CrossRef]
  16. E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1 (MIT, 2006).
  17. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B29, 896–900 (2012).
    [CrossRef]
  18. W. Coomans, G. Van der Sande, and L. Gelens, “Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide,” Phys. Rev. A88, 033813 (2013).
    [CrossRef]
  19. P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated inp microdisk lasers on soi,” Opt. Express21, 10622–10631 (2013).
    [CrossRef] [PubMed]
  20. L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable iii–v compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett., IEEE22, 1270–1272 (2010).
    [CrossRef]

2013

M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).

K. Alexander, T. Van Vaerenbergh, M. Fiers, P. Mechet, J. Dambre, and P. Bienstman, “Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response,” Opt. Express21, 20292–20308 (2013).
[CrossRef]

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
[CrossRef]

W. Coomans, G. Van der Sande, and L. Gelens, “Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide,” Phys. Rev. A88, 033813 (2013).
[CrossRef]

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated inp microdisk lasers on soi,” Opt. Express21, 10622–10631 (2013).
[CrossRef] [PubMed]

2012

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B29, 896–900 (2012).
[CrossRef]

T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express20, 20292–20308 (2012).
[CrossRef] [PubMed]

A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Appl. Phys. Lett.100, 103703 (2012).
[CrossRef]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

2011

S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Opt. Lett.36, 4476–4478 (2011).
[CrossRef] [PubMed]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
[CrossRef]

2010

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable iii–v compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett., IEEE22, 1270–1272 (2010).
[CrossRef]

2008

2007

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

2006

A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

2002

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88, 063901 (2002).
[CrossRef] [PubMed]

1997

W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural Networks10, 1659–1671 (1997).
[CrossRef]

Adams, M. J.

A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Appl. Phys. Lett.100, 103703 (2012).
[CrossRef]

Alexander, K.

K. Alexander, T. Van Vaerenbergh, M. Fiers, P. Mechet, J. Dambre, and P. Bienstman, “Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response,” Opt. Express21, 20292–20308 (2013).
[CrossRef]

Baets, R.

J. Van Campenhout, P. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “Design and optimization of electrically injected InP-based microdisk lasers integrated on and coupled to a SOI waveguide circuit,” J. Lightwave Technol.26, 52–63 (2008).
[CrossRef]

Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE (IEEE, 2009), pp. 503–504.
[CrossRef]

Barbay, S.

Barland, S.

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
[CrossRef]

Bazin, A.

Ben Bakir, B.

A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Beri, S.

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
[CrossRef]

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Bienstman, P.

Bigot, L.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

Brunstein, M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

Caluwaerts, K.

Coomans, W.

W. Coomans, G. Van der Sande, and L. Gelens, “Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide,” Phys. Rev. A88, 033813 (2013).
[CrossRef]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
[CrossRef]

Dambre, J.

Danckaert, J.

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
[CrossRef]

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE (IEEE, 2009), pp. 503–504.
[CrossRef]

De Koninck, Y.

Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE (IEEE, 2009), pp. 503–504.
[CrossRef]

Di Cioccio, L.

Fedeli, J.-M.

Feyereisen, M.

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
[CrossRef]

Fiers, M.

Garbin, B.

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
[CrossRef]

Gelens, L.

W. Coomans, G. Van der Sande, and L. Gelens, “Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide,” Phys. Rev. A88, 033813 (2013).
[CrossRef]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
[CrossRef]

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Giudici, M.

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
[CrossRef]

Goulding, D.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Greene, G.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Halioua, Y.

Hartnett, M.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Hegarty, S.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Henning, I. D.

A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Appl. Phys. Lett.100, 103703 (2012).
[CrossRef]

Hurtado, A.

A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Appl. Phys. Lett.100, 103703 (2012).
[CrossRef]

Huybrechts, K.

Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE (IEEE, 2009), pp. 503–504.
[CrossRef]

Huyet, G.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Izhikevich, E. M.

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1 (MIT, 2006).

Karle, T.

Krauskopf, B.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88, 063901 (2002).
[CrossRef] [PubMed]

Kumar, R.

Kuszelewicz, R.

Lenstra, D.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88, 063901 (2002).
[CrossRef] [PubMed]

Levenson, A.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

Levenson, J. A.

A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Liu, L.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable iii–v compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett., IEEE22, 1270–1272 (2010).
[CrossRef]

Maass, W.

W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural Networks10, 1659–1671 (1997).
[CrossRef]

Mashall, L.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

McInerney, J.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Mechet, P.

Melnik, S.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Member, S.

M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).

Mezosi, G.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Monnier, P.

Morthier, G.

Nahmias, M. A.

M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).

Prucnal, P. R.

M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).

Rachinskii, D.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Raineri, F.

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated inp microdisk lasers on soi,” Opt. Express21, 10622–10631 (2013).
[CrossRef] [PubMed]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Raj, R.

Rasskazov, O.

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

Regreny, P.

Roelkens, G.

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated inp microdisk lasers on soi,” Opt. Express21, 10622–10631 (2013).
[CrossRef] [PubMed]

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable iii–v compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett., IEEE22, 1270–1272 (2010).
[CrossRef]

Rojo-Romeo, P.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable iii–v compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett., IEEE22, 1270–1272 (2010).
[CrossRef]

Romeo, P.

Sagnes, I.

Schires, K.

A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Appl. Phys. Lett.100, 103703 (2012).
[CrossRef]

Schrauwen, B.

Seassal, C.

Shastri, B. J.

M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).

Sorel, M.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Spuesens, T.

Tait, A. N.

M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).

Turconi, M.

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
[CrossRef]

Van Campenhout, J.

Van der Sande, G.

W. Coomans, G. Van der Sande, and L. Gelens, “Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide,” Phys. Rev. A88, 033813 (2013).
[CrossRef]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
[CrossRef]

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE (IEEE, 2009), pp. 503–504.
[CrossRef]

Van Thourhout, D.

Van Vaerenbergh, T.

Vande Ginste, D.

Verschaffelt, G.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88, 063901 (2002).
[CrossRef] [PubMed]

Yacomotti, A. M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Opt. Lett.36, 4476–4478 (2011).
[CrossRef] [PubMed]

A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Appl. Phys. Lett.100, 103703 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).

IEEE Photonics Technol. Lett., IEEE

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable iii–v compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett., IEEE22, 1270–1272 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Neural Networks

W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural Networks10, 1659–1671 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010).
[CrossRef]

Phys. Rev. A

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012).
[CrossRef]

W. Coomans, G. Van der Sande, and L. Gelens, “Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide,” Phys. Rev. A88, 033813 (2013).
[CrossRef]

Phys. Rev. E

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013).
[CrossRef]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 036209 (2011).
[CrossRef]

Phys. Rev. Lett.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88, 063901 (2002).
[CrossRef] [PubMed]

D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007).
[CrossRef] [PubMed]

A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006).
[CrossRef] [PubMed]

Other

Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE (IEEE, 2009), pp. 503–504.
[CrossRef]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1 (MIT, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Topology used to cascade two microdisks. The connection between both lasers imposes a phase difference Δϕ. (b) Input and output power of the first disk when the second disk is ‘turned off’ (current as well as locking signal are absent). The bottom graph shows the phase difference between the output pulse and the locking signal.

Fig. 2
Fig. 2

Input pulse power and output power of both disks. Both disks are pumped with a 2.3 mA current and Δϕ = 2.8 rad. The locking signals for both disks are 3.8 μ W. The input pulse is 1 μ W strong and 0.1 ns long.

Fig. 3
Fig. 3

(a) Symmetry breaking by difference in locking amplitude. The locking signal for the first disk has an amplitude of 4 μ W. For the second disk, the locking amplitude is 3.9 μ W. Both disks are pumped with a 2.3 mA current, Δϕ = 2.8 rad. The input pulse is 3 μW strong and 0.2 ns long. (b) Symmetry breaking by difference in locking phase. The locking signals for both disks have an amplitude of 3.55 μ W, while ϕ CW 2 = ϕ CW 1 + π 2. Both disks are pumped with a 2.3 mA current, Δϕ = 4.2 rad. The input pulse is 1 μW strong and 0.1 ns long.

Fig. 4
Fig. 4

Influence of variations of the current through disks 1 and 2, ΔI1 and ΔI2, respectively. Unperturbed, both currents are 2.3 mA, Δϕ = 4.2 rad. The locking signals for both disks are 3.55 μ W and the input pulse is 1 μW strong and 0.15 ns long. As we are interested in an unidirectional excitation transfer, the optimal current setting appears when both disks only excite once. We represent a single excitation of the respective disk using black pixels, so the cross section of the black regions in both plots defines the domain with a unidirectional excitation transfer. In the light grey regions, the disk output is oscillating, independent of the perturbation. In the white regions, there is neither oscillation, nor excitation. In the dark grey regions, the disk shows more complex multipulse excitability (two pulses or more, after which the system decays again). The white cross represents the unperturbed system (ΔI1 = 0 and ΔI2 = 0).

Fig. 5
Fig. 5

Influence of variations of the frequency detunings of both disks, Δω1 and Δω2, respectively. Unperturbed, the detuning is −20 ns−1. The locking amplitude for both disks is 3.55 μ W. The input pulse is 1 μW strong and 0.15 ns long. The colors represent the same behaviors as in Fig. 4.

Fig. 6
Fig. 6

(a) Time trace of output powers of both lasers, the detuning of the second laser is now −40 ns−1, other parameters are identical to the ones used in Fig. 3(b). (b) Time trace of output powers of both lasers, the detuning of the second laser is still −40 ns−1, I2 is decreased to 1.7 mA. The locking signal amplitudes are 3.55 μ W and 3 3.55 μ W, for disk 1 and 2, respectively.

Tables (1)

Tables Icon

Table 1 Model parameters are taken from [14].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d E 1 + d t = 1 2 ( 1 j α ) ( G 1 + 1 τ p ) E 1 + + j Δ ω 1 E 1 + + C E 1 j κ τ h ¯ ω 0 [ j κ h ¯ ω 0 τ 1 2 ( e j Δ ϕ 1 2 E 2 ) + 1 2 ( 1 2 E C W , 1 + 1 2 E t r ) ] ,
d E 1 d t = 1 2 ( 1 j α ) ( G 1 1 τ p ) E 1 + j Δ ω 1 E 1 + C E 1 + ,
d E 2 + d t = 1 2 ( 1 j α ) ( G 2 + 1 τ p ) E 2 + + j Δ ω 2 E 2 + + C E 2 j κ τ h ¯ ω 0 [ j κ h ¯ ω 0 τ 1 2 ( e j Δ ϕ 1 2 E 1 ) + 1 2 E C W , 2 ] ,
d E 2 d t = 1 2 ( 1 j α ) ( G 2 1 τ p ) E 2 + j Δ ω 2 E 2 + C E 2 + ,
d N i d t = η I i q N i τ c G i + | E i + | 2 G i | E i | 2 ,
G i ± = Γ g N ( N i N 0 ) 1 + Γ ε N L ( | E i ± | 2 + 2 | E i | 2 ) .
E out , i = j κ h ¯ ω 0 τ e j Δ ϕ 1 2 E i .

Metrics