Abstract

We report the design and use of a megawatt peak power Nd:YAG/Cr4+:YAG microchip laser for efficient second to ninth harmonic generation. We show that the sub-nanosecond pulse width region, between 100 ps and 1 ns, is ideally suited for efficient wavelength conversion. Using this feature, we report 85% second harmonic generation efficiency using lithium triborate (LBO), 60% fourth harmonic generation efficiency usingß-barium borate, and 44% IR to UV third harmonic generation efficiency using Type I and Type II LBO. Finally, we report the first demonstration of 118 nm VUV generation in xenon gas using a microchip laser.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999).
    [CrossRef]
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
    [CrossRef]
  3. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
    [CrossRef]
  4. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011).
    [CrossRef] [PubMed]
  5. R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express2(7), 907–919 (2012).
    [CrossRef]
  6. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers: errata,” Opt. Lett.21(19), 1618 (1996).
    [CrossRef] [PubMed]
  7. N. P. Lockyer and J. C. Vickerman, “Single photon ionization mass spectrometry using laser-generated vacuum ultraviolet photons,” Laser Chem.17(3), 139–159 (1997).
    [CrossRef]
  8. J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008).
    [CrossRef] [PubMed]
  9. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express1(5), 1040–1050 (2011).
    [CrossRef]
  10. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Elect. 11, 287–296.
    [CrossRef]
  11. R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng.52(7), 076102 (2013).
    [CrossRef]

2013 (1)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng.52(7), 076102 (2013).
[CrossRef]

2012 (1)

2011 (2)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

2008 (1)

J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008).
[CrossRef] [PubMed]

2001 (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

1999 (1)

J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999).
[CrossRef]

1997 (1)

N. P. Lockyer and J. C. Vickerman, “Single photon ionization mass spectrometry using laser-generated vacuum ultraviolet photons,” Laser Chem.17(3), 139–159 (1997).
[CrossRef]

1996 (1)

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Bhandari, R.

Furukawa, Y.

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Lockyer, N. P.

N. P. Lockyer and J. C. Vickerman, “Single photon ionization mass spectrometry using laser-generated vacuum ultraviolet photons,” Laser Chem.17(3), 139–159 (1997).
[CrossRef]

Miyamoto, A.

Pavel, N.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Tago, T.

Taira, T.

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng.52(7), 076102 (2013).
[CrossRef]

R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express2(7), 907–919 (2012).
[CrossRef]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011).
[CrossRef] [PubMed]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express1(5), 1040–1050 (2011).
[CrossRef]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Vickerman, J. C.

N. P. Lockyer and J. C. Vickerman, “Single photon ionization mass spectrometry using laser-generated vacuum ultraviolet photons,” Laser Chem.17(3), 139–159 (1997).
[CrossRef]

Wang, L. S.

J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008).
[CrossRef] [PubMed]

Wang, X. B.

J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008).
[CrossRef] [PubMed]

Xing, X. P.

J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008).
[CrossRef] [PubMed]

Yang, J.

J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008).
[CrossRef] [PubMed]

Zayhowski, J. J.

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

J. Chem. Phys. (1)

J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Laser Chem. (1)

N. P. Lockyer and J. C. Vickerman, “Single photon ionization mass spectrometry using laser-generated vacuum ultraviolet photons,” Laser Chem.17(3), 139–159 (1997).
[CrossRef]

Opt. Eng. (1)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng.52(7), 076102 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999).
[CrossRef]

Opt. Mater. Express (2)

Other (1)

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Elect. 11, 287–296.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental set-up for third harmonic generation.

Fig. 2
Fig. 2

Optical profile of the residual 532 nm beam (a) before retuning and (b) after retuning of the first LBO crystal.

Fig. 3
Fig. 3

Optical profile of 355 nm beam.

Fig. 4
Fig. 4

Temporal profile of 355 nm pulse.

Fig. 5
Fig. 5

Experimental set-up for ninth harmonic generation: (a) schematic (b) photograph.

Fig. 6
Fig. 6

Ninth harmonic (118 nm) generation versus Xe gas pressure.

Fig. 7
Fig. 7

Ninth harmonic (118 nm) generation versus input 355 nm pulse energy.

Fig. 8
Fig. 8

Mass spectrum with benzene for different pulse energies at 355 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η=tan h 2 [ κ L ( P ω A ) 1/2 ]
P 3 N 2 χ 2 P 1 3 F(bΔk,b,f,L)

Metrics