R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation,” Opt. Lett.38(2), 229–231 (2013).

[CrossRef]
[PubMed]

V. Oliker, J. Rubinstein, and G. Wolansky, “Ray mapping and illumination control,” J. Photonics Energy3(1), 035599 (2013).

[CrossRef]

Z. Feng, L. Huang, M. Gong, and G. Jin, “Beam shaping system design using double freeform optical surfaces,” Opt. Express21(12), 14728–14735 (2013).

[CrossRef]
[PubMed]

D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett.36(6), 918–920 (2011).

[CrossRef]
[PubMed]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. Ration. Mech. Anal.201(3), 1013–1045 (2011).

[CrossRef]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of Monge-Ampère equation,” Appl. Numer. Math.61(3), 298–307 (2011).

[CrossRef]

Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010).

[CrossRef]
[PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express18(5), 5295–5304 (2010).

[CrossRef]
[PubMed]

B. Parkyn and D. Pelka, “Free form lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE6338, 633808 (2006).

[CrossRef]

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed illuminance properties,” Proc. SPIE5942, 594207 (2005).

[CrossRef]

H. Ries, “Laser beam shaping by double tailoring,” Proc. SPIE5876, 587607 (2005).

[CrossRef]

T. Glimm and V. Oliker, “Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle,” Indiana Univ. Math. J.53(5), 1255–1277 (2004).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. Comput. Vis.60(3), 225–240 (2004).

[CrossRef]

J. D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,” Numer. Math.84(3), 375–393 (2000).

[CrossRef]

W. A. Parkyn, “Illumination lenses designed by extrinsic differential geometry,” Proc. SPIE3482, 389–396 (1998).

[CrossRef]

R. J. McCann, “Existence and uniqueness of monotone measure-preserving maps,” Duke Math. J.80(2), 309–323 (1995).

[CrossRef]

R. T. Rockafellar, “Characterization of the subdifferentials of convex functions,” Pac. J. Math.17(3), 497–510 (1966).

[CrossRef]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. Comput. Vis.60(3), 225–240 (2004).

[CrossRef]

J. D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,” Numer. Math.84(3), 375–393 (2000).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

J. D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,” Numer. Math.84(3), 375–393 (2000).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

Z. Feng, L. Huang, M. Gong, and G. Jin, “Beam shaping system design using double freeform optical surfaces,” Opt. Express21(12), 14728–14735 (2013).

[CrossRef]
[PubMed]

Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010).

[CrossRef]
[PubMed]

T. Glimm and V. Oliker, “Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle,” Indiana Univ. Math. J.53(5), 1255–1277 (2004).

[CrossRef]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. Comput. Vis.60(3), 225–240 (2004).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation,” Opt. Lett.38(2), 229–231 (2013).

[CrossRef]
[PubMed]

Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010).

[CrossRef]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation,” Opt. Lett.38(2), 229–231 (2013).

[CrossRef]
[PubMed]

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express16(17), 12958–12966 (2008).

[CrossRef]
[PubMed]

Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010).

[CrossRef]
[PubMed]

L. Wang, K. Y. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt.46(18), 3716–3723 (2007).

[CrossRef]
[PubMed]

R. J. McCann, “Existence and uniqueness of monotone measure-preserving maps,” Duke Math. J.80(2), 309–323 (1995).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

V. Oliker, J. Rubinstein, and G. Wolansky, “Ray mapping and illumination control,” J. Photonics Energy3(1), 035599 (2013).

[CrossRef]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. Ration. Mech. Anal.201(3), 1013–1045 (2011).

[CrossRef]

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed illuminance properties,” Proc. SPIE5942, 594207 (2005).

[CrossRef]

T. Glimm and V. Oliker, “Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle,” Indiana Univ. Math. J.53(5), 1255–1277 (2004).

[CrossRef]

B. Parkyn and D. Pelka, “Free form lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE6338, 633808 (2006).

[CrossRef]

W. A. Parkyn, “Illumination lenses designed by extrinsic differential geometry,” Proc. SPIE3482, 389–396 (1998).

[CrossRef]

B. Parkyn and D. Pelka, “Free form lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE6338, 633808 (2006).

[CrossRef]

R. T. Rockafellar, “Characterization of the subdifferentials of convex functions,” Pac. J. Math.17(3), 497–510 (1966).

[CrossRef]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of Monge-Ampère equation,” Appl. Numer. Math.61(3), 298–307 (2011).

[CrossRef]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of Monge-Ampère equation,” Appl. Numer. Math.61(3), 298–307 (2011).

[CrossRef]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. Comput. Vis.60(3), 225–240 (2004).

[CrossRef]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of Monge-Ampère equation,” Appl. Numer. Math.61(3), 298–307 (2011).

[CrossRef]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. Comput. Vis.60(3), 225–240 (2004).

[CrossRef]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of Monge-Ampère equation,” Appl. Numer. Math.61(3), 298–307 (2011).

[CrossRef]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. Ration. Mech. Anal.201(3), 1013–1045 (2011).

[CrossRef]

R. J. McCann, “Existence and uniqueness of monotone measure-preserving maps,” Duke Math. J.80(2), 309–323 (1995).

[CrossRef]

T. Glimm and V. Oliker, “Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle,” Indiana Univ. Math. J.53(5), 1255–1277 (2004).

[CrossRef]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. Comput. Vis.60(3), 225–240 (2004).

[CrossRef]

V. Oliker, J. Rubinstein, and G. Wolansky, “Ray mapping and illumination control,” J. Photonics Energy3(1), 035599 (2013).

[CrossRef]

J. D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,” Numer. Math.84(3), 375–393 (2000).

[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).

[CrossRef]

Z. Feng, L. Huang, M. Gong, and G. Jin, “Beam shaping system design using double freeform optical surfaces,” Opt. Express21(12), 14728–14735 (2013).

[CrossRef]
[PubMed]

A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express20(13), 14477–14485 (2012).

[CrossRef]
[PubMed]

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express16(17), 12958–12966 (2008).

[CrossRef]
[PubMed]

Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010).

[CrossRef]
[PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express18(5), 5295–5304 (2010).

[CrossRef]
[PubMed]

D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett.36(6), 918–920 (2011).

[CrossRef]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation,” Opt. Lett.38(2), 229–231 (2013).

[CrossRef]
[PubMed]

R. T. Rockafellar, “Characterization of the subdifferentials of convex functions,” Pac. J. Math.17(3), 497–510 (1966).

[CrossRef]

H. Ries, “Laser beam shaping by double tailoring,” Proc. SPIE5876, 587607 (2005).

[CrossRef]

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed illuminance properties,” Proc. SPIE5942, 594207 (2005).

[CrossRef]

W. A. Parkyn, “Illumination lenses designed by extrinsic differential geometry,” Proc. SPIE3482, 389–396 (1998).

[CrossRef]

B. Parkyn and D. Pelka, “Free form lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE6338, 633808 (2006).

[CrossRef]

W. A. Parkyn and D. G. Pelka, “Free-form lenses for rectangular illumination zones,” Anthony, Inc., US Patent 7674019 (2010).

W. A. Parkyn, and Jr., “Illuminating lens designed by extrinsic differential geometry,” Teledyne Lighting and Display Products, Inc., US Patent 5924788 (1999).

W. B. Elmer, The Optical Design of Reflectors, 2nd ed. (Wiley, 1980), Chap.4.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2005).

M. Gdeisat and F. Lilley, “Two-dimensional phase unwrapping problem,” http://www.ljmu.ac.uk/GERI/CEORG_Docs/Two_Dimensional_Phase_Unwrapping_Final.pdf .