Abstract

Considering the propagation of surface plasmon polaritons (SPPs) supported by a graphene monolayer can be effectively controlled via electrostatic gating, we propose a graphene monolayer on a graded silicon-grating substrate with dielectric spacer as an interlayer for plasmonic rainbow trapping in the infrared domain. Since the dispersive relation of SPPs is dependent on the width of dielectric spacer filling the silicon grating, the guided SPPs at different frequencies can be localized at different positions along the graphene surface, associated with the period of silicon grating. The group velocity of slow SPPs can be made to be several hundred times smaller than light velocity in vacuum. We also predict the capability of completely releasing the trapped SPPs by dynamically tuning the chemical potential of graphene by means of gate voltage. The advantages of such a structure include compact size, wide frequency tunability, and compatibility with current micro/nanofabrication, which holds great promise for applications in graphene-based optoelectronic devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
    [CrossRef] [PubMed]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
    [CrossRef]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
    [CrossRef] [PubMed]
  4. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
    [CrossRef] [PubMed]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
    [CrossRef] [PubMed]
  6. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]
  7. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001).
    [CrossRef] [PubMed]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  9. L. Chen and G. Wang, “Nanofocusing of light energy by ridged metal heterostructures,” Appl. Phys. B89(4), 573–577 (2007).
    [CrossRef]
  10. L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013).
    [CrossRef]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  12. L. Chen and G. P. Wang, “Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging,” Opt. Express17(5), 3903–3912 (2009).
    [CrossRef] [PubMed]
  13. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  14. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
    [CrossRef] [PubMed]
  15. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
    [CrossRef] [PubMed]
  16. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120 (2012).
    [CrossRef] [PubMed]
  17. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
    [CrossRef] [PubMed]
  18. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
    [CrossRef] [PubMed]
  19. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
    [CrossRef]
  20. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010).
    [CrossRef]
  21. L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
    [CrossRef]
  22. S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep.2, 583 (2012).
    [CrossRef] [PubMed]
  23. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
    [CrossRef] [PubMed]
  24. W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
    [CrossRef] [PubMed]
  25. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
    [CrossRef] [PubMed]
  26. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
    [CrossRef] [PubMed]
  27. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  28. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
    [CrossRef] [PubMed]
  29. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
    [PubMed]
  30. H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012).
    [CrossRef]
  31. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009).
    [CrossRef]
  32. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85(12), 125431 (2012).
    [CrossRef]
  33. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012).
    [CrossRef]
  34. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012).
    [CrossRef]
  35. T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express21(18), 20888–20899 (2013).
    [CrossRef] [PubMed]
  36. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011).
    [CrossRef] [PubMed]
  37. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012).
    [CrossRef] [PubMed]
  38. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011).
    [CrossRef] [PubMed]
  39. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  40. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
    [CrossRef]
  41. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  42. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
    [CrossRef] [PubMed]
  43. W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
    [CrossRef]

2013 (3)

L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013).
[CrossRef]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
[CrossRef] [PubMed]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express21(18), 20888–20899 (2013).
[CrossRef] [PubMed]

2012 (8)

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85(12), 125431 (2012).
[CrossRef]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012).
[CrossRef]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012).
[CrossRef]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012).
[CrossRef]

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep.2, 583 (2012).
[CrossRef] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120 (2012).
[CrossRef] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012).
[CrossRef] [PubMed]

2011 (5)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011).
[CrossRef] [PubMed]

2010 (4)

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010).
[CrossRef]

J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
[CrossRef] [PubMed]

W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef] [PubMed]

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

2009 (4)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009).
[CrossRef]

L. Chen and G. P. Wang, “Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging,” Opt. Express17(5), 3903–3912 (2009).
[CrossRef] [PubMed]

2008 (1)

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

2007 (5)

L. Chen and G. Wang, “Nanofocusing of light energy by ridged metal heterostructures,” Appl. Phys. B89(4), 573–577 (2007).
[CrossRef]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (4)

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001 (2)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001).
[CrossRef] [PubMed]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
[CrossRef] [PubMed]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Alem, N.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Alemán, B.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011).
[CrossRef] [PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Andryieuski, A.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012).
[CrossRef]

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

Banyal, R.

W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef] [PubMed]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartoli, F. J.

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Bing Lu, W.

H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012).
[CrossRef]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009).
[CrossRef]

Casse, B.

W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef] [PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011).
[CrossRef] [PubMed]

Chen, L.

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express21(18), 20888–20899 (2013).
[CrossRef] [PubMed]

L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013).
[CrossRef]

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010).
[CrossRef]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

L. Chen and G. P. Wang, “Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging,” Opt. Express17(5), 3903–3912 (2009).
[CrossRef] [PubMed]

L. Chen and G. Wang, “Nanofocusing of light energy by ridged metal heterostructures,” Appl. Phys. B89(4), 573–577 (2007).
[CrossRef]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011).
[CrossRef] [PubMed]

Chen, S.

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

Chigrin, D. N.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012).
[CrossRef]

Chou, C. W.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

Chu, H. S.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85(12), 125431 (2012).
[CrossRef]

Crommie, M.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

de Riedmatten, H.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Engelen, R. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Felinto, D.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Gan, C. H.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85(12), 125431 (2012).
[CrossRef]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
[CrossRef] [PubMed]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010).
[CrossRef]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012).
[CrossRef] [PubMed]

Gao Dong, Z.

H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012).
[CrossRef]

García de Abajo, F. J.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011).
[CrossRef] [PubMed]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Geng, B.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Gersen, H.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Girit, C.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Hane, K.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

He, S.

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep.2, 583 (2012).
[CrossRef] [PubMed]

He, Y.

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep.2, 583 (2012).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
[CrossRef] [PubMed]

Huang, Y.

W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef] [PubMed]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009).
[CrossRef]

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
[CrossRef] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Jiang, Y.

H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012).
[CrossRef]

Jin, Y.

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep.2, 583 (2012).
[CrossRef] [PubMed]

Ju Xu, H.

H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kanamori, Y.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Kim, K. Y.

Kimble, H. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011).
[CrossRef] [PubMed]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Lai, J.

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Lavrinenko, A. V.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012).
[CrossRef]

Lee, B.

Lee, I. M.

Lee, S. Y.

Li, E. P.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85(12), 125431 (2012).
[CrossRef]

Li, W.

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

Li, X.

L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013).
[CrossRef]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express21(18), 20888–20899 (2013).
[CrossRef] [PubMed]

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001).
[CrossRef] [PubMed]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
[CrossRef] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120 (2012).
[CrossRef] [PubMed]

Lu, W.

W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef] [PubMed]

Maserati, L.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Na, H.

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120 (2012).
[CrossRef] [PubMed]

Park, J.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Polyakov, S. V.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012).
[CrossRef] [PubMed]

Regan, W.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

Sasaki, M.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Shen, Y.

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009).
[CrossRef]

Sridhar, S.

W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Teng, J.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012).
[CrossRef]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

van Enk, S. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Wang, B.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012).
[CrossRef]

Wang, F.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Wang, G.

L. Chen and G. Wang, “Nanofocusing of light energy by ridged metal heterostructures,” Appl. Phys. B89(4), 573–577 (2007).
[CrossRef]

Wang, G. P.

L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013).
[CrossRef]

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010).
[CrossRef]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

L. Chen and G. P. Wang, “Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging,” Opt. Express17(5), 3903–3912 (2009).
[CrossRef] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120 (2012).
[CrossRef] [PubMed]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012).
[CrossRef] [PubMed]

Yuan, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012).
[CrossRef]

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
[CrossRef] [PubMed]

Zettl, A.

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Zhang, T.

Zhang, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012).
[CrossRef]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

ACS Nano (2)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012).
[CrossRef] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011).
[CrossRef] [PubMed]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120 (2012).
[CrossRef] [PubMed]

Appl. Phys. B (2)

L. Chen and G. Wang, “Nanofocusing of light energy by ridged metal heterostructures,” Appl. Phys. B89(4), 573–577 (2007).
[CrossRef]

L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef] [PubMed]

H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012).
[CrossRef]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012).
[CrossRef]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010).
[CrossRef]

W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010).
[CrossRef]

Nano Lett. (1)

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

Nature (7)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012).
[PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Opt. Commun. (1)

L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009).
[CrossRef]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85(12), 125431 (2012).
[CrossRef]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Sci. Rep. (2)

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013).
[CrossRef] [PubMed]

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep.2, 583 (2012).
[CrossRef] [PubMed]

Science (3)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a uniform plasmonic grating structure (UPGS): A graphene sheet on a uniform silicon-grating substrate with dielectric spacer as an interlayer, where the widths of silica and silicon layers are denoted as w1 and w2, respectively. By biasing the graphene sheet with a single static voltage, the static electric field is distributed periodically according to the height of d1 and d2, leading to the periodical static electric field. This results in periodical chemical potential, μc1 and μc2, and conductivity distributions, σg1 and σg1, across the graphene. (b) Calculated dispersion curves of SPPs along the z direction for different w1, while w2 is fixed at 60nm (w = w1 + w2). The bias voltage, Vbias, is set at 45.6V to provide μc1 = 0.2eV and μc2 = 0.5eV, respectively. The dispersion curve for light line is normalized with w = 90nm.

Fig. 2
Fig. 2

The dependence of group index on the excitation frequencies for different widths of dielectric spacer, w1 = 10nm (red lines), 15nm (blue lines), 20nm (green lines), 25nm (purple lines), and 30nm (black lines), with different gate voltages Vbias: 40.2V (-﹒-), 45.6V (─), and 50V (—).

Fig. 3
Fig. 3

Schematic of the designed graded plasmonic grating structure (GPGS) for rainbow trapping in the infrared domain. The width of dielectric spacer, w1, increases linearly from 10nm to 30nm with an incremental step s.

Fig. 4
Fig. 4

Calculated adiabatic parameter δ for different incremental steps of the width of dielectric spacer with wavelength of 11μm, corresponding to the period of grating ranging from 70nm to 90nm.

Fig. 5
Fig. 5

Plasmonic rainbow trapping for infrared frequencies obtained by using finite-element method (FEM) simulations: (a-e) correspond to two-dimensional field distribution at five different wavelengths of 8μm (a), 8.5μm (b), 9μm (c), 9.5μm (d), and 10μm (e). The insets show the amplified image of field distributions in the trapping regions bounded by the white rectangle. The width of silica layer, w1, linearly increases from 10nm to 30nm with the step of 0.5nm.

Fig. 6
Fig. 6

(a) The dependence of μc1 and μc2 on the bias voltage with d1 = 171nm and d2 = 29nm. (b) Dispersion curves calculated for different w1, while the bias voltage shifts to 120V, corresponding to μc1 = 0.33eV and μc2 = 0.81eV. The lowest blue solid line represents the dispersion curve for w1 = 10nm with Vbias = 45.6V.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε g =1+ i σ g η 0 k 0 Δ
σ g =i e 2 k B T π 2 ( ω+i τ 1 ) [ μ c k B T +2ln( exp( μ c k B T )+1 ) ] +i e 2 4π 2 ln[ 2| μ c |( ω+i τ 1 ) 2| μ c |+( ω+i τ 1 ) ]
ε 1 α 1 + ε 2 α 2 + i σ g ω ε 0 =0
δ= β 1 / z 1
δ ( 1/ β 1 1/ β 2 ) / Δz= ( 1/ β 1 1/ β 2 ) /w 1

Metrics