Abstract

Half-cycled DDO-OFDM transmission and reception was successfully demonstrated to resist SSMI without spectra efficiency reduction for the first time. The receiver sensitivity was improved by 2 and 1.5 dB in QPSK and 16QAM OFDM with 40-km SSMF-28 transmission, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lowery, “Improving sensitivity and spectral efficiency in direct-detection optical OFDM systems,” In Optical Fiber Communication Conference. Optical Society of America, OSA Technical Digest (online) (Optical Society of America, 2008), paper OMM4.
    [CrossRef]
  2. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express14(6), 2079–2084 (2006).
    [CrossRef] [PubMed]
  3. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightwave Technol.27(10), 1332–1339 (2009).
    [CrossRef]
  4. C.-Y. Wang, C.-C. Wei, C.-T. Lin, and S. Chi, “Direct-detection polarization division multiplexed orthogonal frequency-division multiplexing transmission systems without polarization tracking,” Opt. Lett.37(24), 5070–5072 (2012).
    [CrossRef] [PubMed]
  5. L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
    [CrossRef]
  6. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
    [CrossRef]
  7. S. L. Jansen, I. Morita, T. C. W. Schenck, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
    [CrossRef]
  8. Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
    [CrossRef]
  9. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
    [CrossRef]
  10. X. Xin, L. Zhang, B. Liu, and J. Yu, “Dynamic λ-OFDMA with selective multicast overlaid,” Opt. Express19(8), 7847–7855 (2011).
    [CrossRef] [PubMed]
  11. Y. Mostofi and D. C. Cox, “A robust timing synchronization design in OFDM systems-part I: low-mobility cases,” IEEE Trans. Wirel. Comm.6(12), 4329–4339 (2007).
    [CrossRef]

2013

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
[CrossRef]

2012

2011

2010

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

2009

2008

S. L. Jansen, I. Morita, T. C. W. Schenck, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

2007

Y. Mostofi and D. C. Cox, “A robust timing synchronization design in OFDM systems-part I: low-mobility cases,” IEEE Trans. Wirel. Comm.6(12), 4329–4339 (2007).
[CrossRef]

2006

Arbab, V. R.

Armstrong, J.

Cao, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

Chang, G.-K.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chen, L.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chi, N.

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
[CrossRef]

Chi, S.

Christen, L. C.

Cox, D. C.

Y. Mostofi and D. C. Cox, “A robust timing synchronization design in OFDM systems-part I: low-mobility cases,” IEEE Trans. Wirel. Comm.6(12), 4329–4339 (2007).
[CrossRef]

Dong, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

Feng, K.-M.

Huang, M.-F.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Jansen, S. L.

Lin, C.-T.

Liu, B.

Lowery, A. J.

Ma, Y.

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

Morita, I.

Mostofi, Y.

Y. Mostofi and D. C. Cox, “A robust timing synchronization design in OFDM systems-part I: low-mobility cases,” IEEE Trans. Wirel. Comm.6(12), 4329–4339 (2007).
[CrossRef]

Peng, W.-R.

Qian, D.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Schenck, T. C. W.

Shamee, B.

Shao, Y.

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
[CrossRef]

Shieh, W.

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

Takeda, N.

Tanaka, H.

Tao, L.

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
[CrossRef]

Wang, C.-Y.

Wang, W.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

Wei, C.-C.

Willner, A. E.

Wu, X.

Xin, X.

Yang, J.-Y.

Yang, Q.

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

Yu, J.

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
[CrossRef]

X. Xin, L. Zhang, B. Liu, and J. Yu, “Dynamic λ-OFDMA with selective multicast overlaid,” Opt. Express19(8), 7847–7855 (2011).
[CrossRef] [PubMed]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Zhang, J.

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
[CrossRef]

Zhang, L.

IEEE Photon. Technol. Lett.

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of Intercarrier Interference Based on Window Shaping in OFDM RoF Systems,” IEEE Photon. Technol. Lett.25(9), 851–854 (2013).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

IEEE Trans. Wirel. Comm.

Y. Mostofi and D. C. Cox, “A robust timing synchronization design in OFDM systems-part I: low-mobility cases,” IEEE Trans. Wirel. Comm.6(12), 4329–4339 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

A. J. Lowery, “Improving sensitivity and spectral efficiency in direct-detection optical OFDM systems,” In Optical Fiber Communication Conference. Optical Society of America, OSA Technical Digest (online) (Optical Society of America, 2008), paper OMM4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Concept of three different types of DDO-OFDM, (b) structure of proposed half-cycled DDO-OFDM, and (c) combination of two parallel half cycled OFDM symbols.

Fig. 2
Fig. 2

Experimental setup of half-cycled DDO-OFDM.

Fig. 3
Fig. 3

The electrical spectra of received OFDM signal: (a) traditional, and (b) half-cycled.

Fig. 4
Fig. 4

BER of 4-QAM OFDM versus received optical power: (a) OBTB, (b) after 40-km SSMF-28.

Fig. 5
Fig. 5

BER of 16-QAM OFDM versus received optical power: (a) OBTB, and (b) after 40-km SSMF-28.

Fig. 6
Fig. 6

Error rate versus payload index of 16QAM-OFDM: (a) traditional, and (b) half-cycled.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

s(t)= k=0 N1 c k exp(j2π f k t) (1tT).
f k =kΔf= k T .
s( t 1 )= k=0 N1 c k exp(j2π f k t 1 ) (1 t 1 T 2 ).
s( t 2 )= k=0 N1 c k exp(j2π f k t 2 ) ( T 2 +1 t 2 T).
s( t 1 + T 2 )= k=0 N1 c k exp(j2π f k ( t 1 + T 2 )) = k=0 N1 c k exp(j2π f k t 1 +jkπ) = k=0 N1 c k (coskπ+jsinkπ)exp(j2π f k t 1 ) = k=0 N1 c k coskπexp(j2π f k t 1 ) (1 t 1 T 2 ).
s( t 1 )= n=1 N1 c n exp(j2π f n t 1 ) + m=0 N2 c m exp(j2π f m t 1 ) (1 t 1 T 2 ).
s( t 2 )=s( t 1 + T 2 ) = k=0 N1 c k coskπexp(j2π f k t 1 ) = n=1 N1 c n cosnπexp(j2π f n t 1 ) + m=0 N2 c m cosmπexp(j2π f m t 1 ) = n=1 N1 c n exp(j2π f n t 1 ) + m=0 N c m exp(j2π f m t 1 ) (1 t 1 T 2 ).
s( t 1 )= n=1 N1 c n exp(j2π f n t 1 ) (1 t 1 T 2 ).
s( t 2 )= n=1 N1 c n exp(j2π f n t 1 ) =s( t 1 )( t 2 = T 2 + t 1 ).

Metrics