Abstract

A ciphertext-only attack (COA) on a joint transform correlator (JTC) encryption system is proposed. From the perspective view of optical cryptanalysis, we find out that the issue to be solved in the COA scheme could be transferred into a phase retrieval problem with single intensity measurement. And in this paper, the hybrid input-output (HIO) algorithm is employed to handle this issue with the help of an inartificial signal domain support and a given frequency domain constraint. Meanwhile, we provide a set of numerical simulations to demonstrate the validity and feasibility of the presented method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, “Securing information with optical technologies,” Phys. Today50(3), 27 (1997).
    [CrossRef]
  2. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett.20(7), 767–769 (1995).
    [CrossRef] [PubMed]
  3. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett.25(12), 887–889 (2000).
    [CrossRef] [PubMed]
  4. G. H. Situ and J. J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett.29(14), 1584–1586 (2004).
    [CrossRef] [PubMed]
  5. X. C. Cheng, L. Z. Cai, Y. R. Wang, X. F. Meng, H. Zhang, X. F. Xu, X. X. Shen, and G. Y. Dong, “Security enhancement of double-random phase encryption by amplitude modulation,” Opt. Lett.33(14), 1575–1577 (2008).
    [CrossRef] [PubMed]
  6. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng.39(8), 2031–2035 (2000).
    [CrossRef]
  7. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett.33(21), 2443–2445 (2008).
    [CrossRef] [PubMed]
  8. B. Wang and Y. Zhang, “Double images hiding based on optical interference,” Opt. Commun.282(17), 3439–3443 (2009).
    [CrossRef]
  9. Y. Zhang, B. Wang, and Z. Dong, “Enhancement of image hiding by exchanging two phase masks,” J. Opt. A, Pure Appl. Opt.11(12), 125406 (2009).
    [CrossRef]
  10. W. He, X. Peng, and X. Meng, “Optical multiple-image hiding based on interference and grating modulation,” J. Opt.14(7), 075401 (2012).
    [CrossRef]
  11. W. He, X. Peng, X. Meng, and X. Liu, “Collision in optical image encryption based on interference and a method for avoiding this security leak,” Opt. Laser Technol.47, 31–36 (2013).
    [CrossRef]
  12. T. Nomura and B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt.39(26), 4783–4787 (2000).
    [CrossRef] [PubMed]
  13. D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng.40(8), 1584–1589 (2001).
    [CrossRef]
  14. S. J. Park, J. Y. Kim, J. K. Bae, and S. J. Kim, “Fourier-plane encryption technique based on removing the effect of phase terms in a joint transform correlator,” Opt. Rev.8(6), 413–415 (2001).
    [CrossRef]
  15. M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng.40(1), 132–137 (2001).
    [CrossRef]
  16. T. Nomura, S. Mikan, Y. Morimoto, and B. Javidi, “Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator,” Appl. Opt.42(8), 1508–1514 (2003).
    [CrossRef] [PubMed]
  17. C. La Mela and C. Iemmi, “Optical encryption using phase-shifting interferometry in a joint transform correlator,” Opt. Lett.31(17), 2562–2564 (2006).
    [CrossRef] [PubMed]
  18. L. C. Lin and C. J. Cheng, “Optimal key mask design for optical encryption based on joint transform correlator architecture,” Opt. Commun.258(2), 144–154 (2006).
    [CrossRef]
  19. G. Situ, U. Gopinathan, D. S. Monaghan, and J. T. Sheridan, “Cryptanalysis of optical security systems with significant output images,” Appl. Opt.46(22), 5257–5262 (2007).
    [CrossRef] [PubMed]
  20. D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Multichanneled encryption via a joint transform correlator architecture,” Appl. Opt.47(31), 5903–5907 (2008).
    [CrossRef] [PubMed]
  21. D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Digital color encryption using a multi-wavelength approach and a joint transform correlator,” J. Opt. A, Pure Appl. Opt.10(10), 104031 (2008).
    [CrossRef]
  22. D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Wavelength multiplexing encryption using joint transform correlator architecture,” Appl. Opt.48(11), 2099–2104 (2009).
    [CrossRef] [PubMed]
  23. E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun.282(16), 3243–3249 (2009).
    [CrossRef]
  24. R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett.35(3), 333–335 (2010).
    [CrossRef] [PubMed]
  25. C. A. Rios, E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optodigital protocol to avoid an external reference beam in a Jtc encrypting processor,” in OSA Technical Digest (CD) (Optical Society of America, 2010), JWA27.
  26. C. Lin and X. Shen, “Analysis and design of impulse attack free generalized joint transform correlator optical encryption scheme,” Opt. Laser Technol.44(7), 2032–2036 (2012).
    [CrossRef]
  27. J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun.283(20), 3917–3921 (2010).
    [CrossRef]
  28. W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng.50(2), 028201 (2011).
    [CrossRef]
  29. J. F. Barrera, C. Vargas, M. Tebaldi, R. Torroba, and N. Bolognini, “Known-plaintext attack on a joint transform correlator encrypting system,” Opt. Lett.35(21), 3553–3555 (2010).
    [CrossRef] [PubMed]
  30. M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
    [CrossRef]
  31. H. Tang, X. Peng, and J. Tian, “Ciphertext-only attack on double random phase encoding optical encryption system,” Acta Phys. Sin.56, 2629–2636 (2007).
  32. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982).
    [CrossRef] [PubMed]

2013

W. He, X. Peng, X. Meng, and X. Liu, “Collision in optical image encryption based on interference and a method for avoiding this security leak,” Opt. Laser Technol.47, 31–36 (2013).
[CrossRef]

M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
[CrossRef]

2012

C. Lin and X. Shen, “Analysis and design of impulse attack free generalized joint transform correlator optical encryption scheme,” Opt. Laser Technol.44(7), 2032–2036 (2012).
[CrossRef]

W. He, X. Peng, and X. Meng, “Optical multiple-image hiding based on interference and grating modulation,” J. Opt.14(7), 075401 (2012).
[CrossRef]

2011

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng.50(2), 028201 (2011).
[CrossRef]

2010

2009

B. Wang and Y. Zhang, “Double images hiding based on optical interference,” Opt. Commun.282(17), 3439–3443 (2009).
[CrossRef]

Y. Zhang, B. Wang, and Z. Dong, “Enhancement of image hiding by exchanging two phase masks,” J. Opt. A, Pure Appl. Opt.11(12), 125406 (2009).
[CrossRef]

D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Wavelength multiplexing encryption using joint transform correlator architecture,” Appl. Opt.48(11), 2099–2104 (2009).
[CrossRef] [PubMed]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun.282(16), 3243–3249 (2009).
[CrossRef]

2008

2007

H. Tang, X. Peng, and J. Tian, “Ciphertext-only attack on double random phase encoding optical encryption system,” Acta Phys. Sin.56, 2629–2636 (2007).

G. Situ, U. Gopinathan, D. S. Monaghan, and J. T. Sheridan, “Cryptanalysis of optical security systems with significant output images,” Appl. Opt.46(22), 5257–5262 (2007).
[CrossRef] [PubMed]

2006

C. La Mela and C. Iemmi, “Optical encryption using phase-shifting interferometry in a joint transform correlator,” Opt. Lett.31(17), 2562–2564 (2006).
[CrossRef] [PubMed]

L. C. Lin and C. J. Cheng, “Optimal key mask design for optical encryption based on joint transform correlator architecture,” Opt. Commun.258(2), 144–154 (2006).
[CrossRef]

2004

2003

2001

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng.40(8), 1584–1589 (2001).
[CrossRef]

S. J. Park, J. Y. Kim, J. K. Bae, and S. J. Kim, “Fourier-plane encryption technique based on removing the effect of phase terms in a joint transform correlator,” Opt. Rev.8(6), 413–415 (2001).
[CrossRef]

M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng.40(1), 132–137 (2001).
[CrossRef]

2000

1997

B. Javidi, “Securing information with optical technologies,” Phys. Today50(3), 27 (1997).
[CrossRef]

1995

1982

Abookasis, D.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng.40(8), 1584–1589 (2001).
[CrossRef]

Amaya, D.

Arazi, O.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng.40(8), 1584–1589 (2001).
[CrossRef]

Bae, J. K.

S. J. Park, J. Y. Kim, J. K. Bae, and S. J. Kim, “Fourier-plane encryption technique based on removing the effect of phase terms in a joint transform correlator,” Opt. Rev.8(6), 413–415 (2001).
[CrossRef]

Barrera, J. F.

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett.35(3), 333–335 (2010).
[CrossRef] [PubMed]

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun.283(20), 3917–3921 (2010).
[CrossRef]

J. F. Barrera, C. Vargas, M. Tebaldi, R. Torroba, and N. Bolognini, “Known-plaintext attack on a joint transform correlator encrypting system,” Opt. Lett.35(21), 3553–3555 (2010).
[CrossRef] [PubMed]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun.282(16), 3243–3249 (2009).
[CrossRef]

Bolognini, N.

Cai, L. Z.

Cheng, C. J.

L. C. Lin and C. J. Cheng, “Optimal key mask design for optical encryption based on joint transform correlator architecture,” Opt. Commun.258(2), 144–154 (2006).
[CrossRef]

Cheng, X. C.

Dong, G. Y.

Dong, Z.

Y. Zhang, B. Wang, and Z. Dong, “Enhancement of image hiding by exchanging two phase masks,” J. Opt. A, Pure Appl. Opt.11(12), 125406 (2009).
[CrossRef]

Fienup, J. R.

Gopinathan, U.

He, W.

M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
[CrossRef]

W. He, X. Peng, X. Meng, and X. Liu, “Collision in optical image encryption based on interference and a method for avoiding this security leak,” Opt. Laser Technol.47, 31–36 (2013).
[CrossRef]

W. He, X. Peng, and X. Meng, “Optical multiple-image hiding based on interference and grating modulation,” J. Opt.14(7), 075401 (2012).
[CrossRef]

Henao, R.

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett.35(3), 333–335 (2010).
[CrossRef] [PubMed]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun.282(16), 3243–3249 (2009).
[CrossRef]

Iemmi, C.

Javidi, B.

T. Nomura, S. Mikan, Y. Morimoto, and B. Javidi, “Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator,” Appl. Opt.42(8), 1508–1514 (2003).
[CrossRef] [PubMed]

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng.40(8), 1584–1589 (2001).
[CrossRef]

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng.39(8), 2031–2035 (2000).
[CrossRef]

T. Nomura and B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt.39(26), 4783–4787 (2000).
[CrossRef] [PubMed]

B. Javidi, “Securing information with optical technologies,” Phys. Today50(3), 27 (1997).
[CrossRef]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett.20(7), 767–769 (1995).
[CrossRef] [PubMed]

Joseph, J.

Kim, J. Y.

S. J. Park, J. Y. Kim, J. K. Bae, and S. J. Kim, “Fourier-plane encryption technique based on removing the effect of phase terms in a joint transform correlator,” Opt. Rev.8(6), 413–415 (2001).
[CrossRef]

Kim, S. J.

S. J. Park, J. Y. Kim, J. K. Bae, and S. J. Kim, “Fourier-plane encryption technique based on removing the effect of phase terms in a joint transform correlator,” Opt. Rev.8(6), 413–415 (2001).
[CrossRef]

La Mela, C.

Liao, M.

M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
[CrossRef]

Lin, C.

C. Lin and X. Shen, “Analysis and design of impulse attack free generalized joint transform correlator optical encryption scheme,” Opt. Laser Technol.44(7), 2032–2036 (2012).
[CrossRef]

Lin, L. C.

L. C. Lin and C. J. Cheng, “Optimal key mask design for optical encryption based on joint transform correlator architecture,” Opt. Commun.258(2), 144–154 (2006).
[CrossRef]

Liu, X.

W. He, X. Peng, X. Meng, and X. Liu, “Collision in optical image encryption based on interference and a method for avoiding this security leak,” Opt. Laser Technol.47, 31–36 (2013).
[CrossRef]

M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
[CrossRef]

Meng, X.

M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
[CrossRef]

W. He, X. Peng, X. Meng, and X. Liu, “Collision in optical image encryption based on interference and a method for avoiding this security leak,” Opt. Laser Technol.47, 31–36 (2013).
[CrossRef]

W. He, X. Peng, and X. Meng, “Optical multiple-image hiding based on interference and grating modulation,” J. Opt.14(7), 075401 (2012).
[CrossRef]

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng.50(2), 028201 (2011).
[CrossRef]

Meng, X. F.

Mikan, S.

Monaghan, D. S.

Morimoto, Y.

Nomura, T.

Ohtsubo, J.

M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng.40(1), 132–137 (2001).
[CrossRef]

Park, S. J.

S. J. Park, J. Y. Kim, J. K. Bae, and S. J. Kim, “Fourier-plane encryption technique based on removing the effect of phase terms in a joint transform correlator,” Opt. Rev.8(6), 413–415 (2001).
[CrossRef]

Peng, X.

W. He, X. Peng, X. Meng, and X. Liu, “Collision in optical image encryption based on interference and a method for avoiding this security leak,” Opt. Laser Technol.47, 31–36 (2013).
[CrossRef]

M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
[CrossRef]

W. He, X. Peng, and X. Meng, “Optical multiple-image hiding based on interference and grating modulation,” J. Opt.14(7), 075401 (2012).
[CrossRef]

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng.50(2), 028201 (2011).
[CrossRef]

H. Tang, X. Peng, and J. Tian, “Ciphertext-only attack on double random phase encoding optical encryption system,” Acta Phys. Sin.56, 2629–2636 (2007).

Qin, W.

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng.50(2), 028201 (2011).
[CrossRef]

Refregier, P.

Rosen, J.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng.40(8), 1584–1589 (2001).
[CrossRef]

Rueda, E.

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett.35(3), 333–335 (2010).
[CrossRef] [PubMed]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun.282(16), 3243–3249 (2009).
[CrossRef]

Shen, X.

C. Lin and X. Shen, “Analysis and design of impulse attack free generalized joint transform correlator optical encryption scheme,” Opt. Laser Technol.44(7), 2032–2036 (2012).
[CrossRef]

Shen, X. X.

Sheridan, J. T.

Singh, K.

Situ, G.

Situ, G. H.

Tang, H.

H. Tang, X. Peng, and J. Tian, “Ciphertext-only attack on double random phase encoding optical encryption system,” Acta Phys. Sin.56, 2629–2636 (2007).

Tebaldi, M.

Tian, J.

H. Tang, X. Peng, and J. Tian, “Ciphertext-only attack on double random phase encoding optical encryption system,” Acta Phys. Sin.56, 2629–2636 (2007).

Torroba, R.

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett.35(3), 333–335 (2010).
[CrossRef] [PubMed]

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun.283(20), 3917–3921 (2010).
[CrossRef]

J. F. Barrera, C. Vargas, M. Tebaldi, R. Torroba, and N. Bolognini, “Known-plaintext attack on a joint transform correlator encrypting system,” Opt. Lett.35(21), 3553–3555 (2010).
[CrossRef] [PubMed]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun.282(16), 3243–3249 (2009).
[CrossRef]

D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Wavelength multiplexing encryption using joint transform correlator architecture,” Appl. Opt.48(11), 2099–2104 (2009).
[CrossRef] [PubMed]

D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Multichanneled encryption via a joint transform correlator architecture,” Appl. Opt.47(31), 5903–5907 (2008).
[CrossRef] [PubMed]

D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Digital color encryption using a multi-wavelength approach and a joint transform correlator,” J. Opt. A, Pure Appl. Opt.10(10), 104031 (2008).
[CrossRef]

Unnikrishnan, G.

Vargas, C.

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun.283(20), 3917–3921 (2010).
[CrossRef]

J. F. Barrera, C. Vargas, M. Tebaldi, R. Torroba, and N. Bolognini, “Known-plaintext attack on a joint transform correlator encrypting system,” Opt. Lett.35(21), 3553–3555 (2010).
[CrossRef] [PubMed]

Wang, B.

B. Wang and Y. Zhang, “Double images hiding based on optical interference,” Opt. Commun.282(17), 3439–3443 (2009).
[CrossRef]

Y. Zhang, B. Wang, and Z. Dong, “Enhancement of image hiding by exchanging two phase masks,” J. Opt. A, Pure Appl. Opt.11(12), 125406 (2009).
[CrossRef]

Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett.33(21), 2443–2445 (2008).
[CrossRef] [PubMed]

Wang, Y. R.

Xu, X. F.

Yamazaki, M.

M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng.40(1), 132–137 (2001).
[CrossRef]

Zhang, H.

Zhang, J. J.

Zhang, Y.

B. Wang and Y. Zhang, “Double images hiding based on optical interference,” Opt. Commun.282(17), 3439–3443 (2009).
[CrossRef]

Y. Zhang, B. Wang, and Z. Dong, “Enhancement of image hiding by exchanging two phase masks,” J. Opt. A, Pure Appl. Opt.11(12), 125406 (2009).
[CrossRef]

Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett.33(21), 2443–2445 (2008).
[CrossRef] [PubMed]

Acta Phys. Sin.

H. Tang, X. Peng, and J. Tian, “Ciphertext-only attack on double random phase encoding optical encryption system,” Acta Phys. Sin.56, 2629–2636 (2007).

Appl. Opt.

J. Opt.

W. He, X. Peng, and X. Meng, “Optical multiple-image hiding based on interference and grating modulation,” J. Opt.14(7), 075401 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

Y. Zhang, B. Wang, and Z. Dong, “Enhancement of image hiding by exchanging two phase masks,” J. Opt. A, Pure Appl. Opt.11(12), 125406 (2009).
[CrossRef]

D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Digital color encryption using a multi-wavelength approach and a joint transform correlator,” J. Opt. A, Pure Appl. Opt.10(10), 104031 (2008).
[CrossRef]

Opt. Commun.

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun.282(16), 3243–3249 (2009).
[CrossRef]

L. C. Lin and C. J. Cheng, “Optimal key mask design for optical encryption based on joint transform correlator architecture,” Opt. Commun.258(2), 144–154 (2006).
[CrossRef]

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun.283(20), 3917–3921 (2010).
[CrossRef]

B. Wang and Y. Zhang, “Double images hiding based on optical interference,” Opt. Commun.282(17), 3439–3443 (2009).
[CrossRef]

Opt. Eng.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng.40(8), 1584–1589 (2001).
[CrossRef]

M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng.40(1), 132–137 (2001).
[CrossRef]

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng.39(8), 2031–2035 (2000).
[CrossRef]

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng.50(2), 028201 (2011).
[CrossRef]

Opt. Laser Technol.

M. Liao, W. He, X. Peng, X. Liu, and X. Meng, “Cryptanalysis of optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Laser Technol.45, 763–767 (2013).
[CrossRef]

W. He, X. Peng, X. Meng, and X. Liu, “Collision in optical image encryption based on interference and a method for avoiding this security leak,” Opt. Laser Technol.47, 31–36 (2013).
[CrossRef]

C. Lin and X. Shen, “Analysis and design of impulse attack free generalized joint transform correlator optical encryption scheme,” Opt. Laser Technol.44(7), 2032–2036 (2012).
[CrossRef]

Opt. Lett.

Opt. Rev.

S. J. Park, J. Y. Kim, J. K. Bae, and S. J. Kim, “Fourier-plane encryption technique based on removing the effect of phase terms in a joint transform correlator,” Opt. Rev.8(6), 413–415 (2001).
[CrossRef]

Phys. Today

B. Javidi, “Securing information with optical technologies,” Phys. Today50(3), 27 (1997).
[CrossRef]

Other

C. A. Rios, E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optodigital protocol to avoid an external reference beam in a Jtc encrypting processor,” in OSA Technical Digest (CD) (Optical Society of America, 2010), JWA27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of optical encryption based on the JTC architecture (a) encryption and (b) decryption.

Fig. 2
Fig. 2

Flow chart of the kth iteration.

Fig. 3
Fig. 3

The simulation results. (a)-(h) and (i)-(p) are the results of scheme A and scheme B, respectively. Specifically, (a) gray-scale image ‘Lena’, (b) multiple-input corresponding to (a), (c) ciphertext corresponding to (b), (d) retrieved plaintext with COA. (e) Binary image ‘SZU’, (f) multiple-input corresponding to (e), (g) ciphertext corresponding to (f), (h) retrieved plaintext with COA. (i) Gray-scale image ‘Baboon’, (j) multiple-input corresponding to (i), (k) ciphertext corresponding to (j), (l) retrieved plaintext with COA. (m) Binary image ‘Chinese characters’, (n) multiple-input corresponding to (m), (o) ciphertext corresponding to (n), (p) retrieved plaintext with COA.

Fig. 4
Fig. 4

The convergence of the (a) scheme A and (b) scheme B for both gray-scale image and binary image, respectively.

Fig. 5
Fig. 5

(a) Binary image ‘SZU’ (256 × 256 pixels), (b) multiple-input (896 × 896 pixels) corresponding to (a), (c) ciphertext (896 × 896 pixels) corresponding to (b), (d) retrieved plaintext (276 × 276 pixels) with COA using a speculated size (276 × 276 pixels) as the signal domain support.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( ξ , η ) = | FT [ f ( x + a , y ) b ( x + a , y ) + h ( x a , y ) ] | 2 = | F ( ξ , η ) B ( ξ , η ) | 2 + | H ( ξ , η ) | 2 + [ F ( ξ , η ) B ( ξ , η ) ] H ( ξ , η ) exp [ j 4 π a ξ ] + [ F ( ξ , η ) B ( ξ , η ) ] H ( ξ , η ) exp [ j 4 π a ξ ]
| FT[f(x+a,y)b(x+a,y)+h(xa,y)] |= E(ξ,η)
G k (ξ,η)=FT{ g k (x,y)}=| G k (ξ,η) |exp[i Φ k (ξ,η)] G k (ξ,η)= E(ξ,η) exp[i Φ k (ξ,η)] g k (x,y)= FT 1 { G k (ξ,η)}=| g k (x,y) |exp[i φ k (x,y)] g k+1 (x,y)={ g k (x,y),x,yγ g k (x,y)β g k (x,y),x,yγ
M S E = 1 M × N i = 1 , j = 1 M , N [ | g k + 1 ( x i , y j ) | f ( x i , y j ) ] 2

Metrics