Abstract

We present an experimental and theoretical study on the gain mechanism in a photonic-crystal-cavity nanolaser with embedded quantum dots. From time-resolved measurements at low excitation power we find that four excitons are coupled to the cavity. At high excitation power we observe a smooth low-threshold transition from spontaneous emission to lasing. Before lasing emission sets in, however, the excitons are observed to saturate, and the gain required for lasing originates rather from multi-excitonic transitions, which give rise to a broad emission background. We compare the experiment to a model of quantum-dot microcavity lasers and find that the number of excitons that must be included to fit the data largely exceeds the measured number, which shows that transitions involving the wetting layer can provide a surprisingly large contribution to the gain.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev.5, 607–633 (2011).
  2. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
    [CrossRef]
  3. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
    [CrossRef]
  4. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
    [CrossRef]
  5. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
    [CrossRef]
  6. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
    [CrossRef]
  7. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
    [CrossRef] [PubMed]
  8. N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012).
    [CrossRef]
  9. M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
    [CrossRef]
  10. S. Noda, “Seeking the ultimate nanolaser,” Science314, 260–261 (2006).
    [CrossRef] [PubMed]
  11. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
    [CrossRef] [PubMed]
  12. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007).
    [CrossRef]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
    [CrossRef]
  14. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
    [CrossRef] [PubMed]
  15. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
    [CrossRef]
  16. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
    [CrossRef]
  17. A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012).
    [CrossRef]
  18. K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
    [CrossRef]
  19. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008).
    [CrossRef]
  20. P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
    [CrossRef] [PubMed]
  21. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
    [CrossRef] [PubMed]
  22. M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013).
    [CrossRef] [PubMed]
  23. P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
    [CrossRef]
  24. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  25. C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007).
    [CrossRef]
  26. S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
    [CrossRef]
  27. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
    [CrossRef] [PubMed]
  28. M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013).
    [CrossRef]
  29. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
    [CrossRef] [PubMed]
  30. Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011).
    [CrossRef] [PubMed]
  31. C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011).
    [CrossRef] [PubMed]
  32. J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
    [CrossRef] [PubMed]

2013

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013).
[CrossRef] [PubMed]

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013).
[CrossRef]

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

2012

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012).
[CrossRef]

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012).
[CrossRef]

2011

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011).
[CrossRef] [PubMed]

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev.5, 607–633 (2011).

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011).
[CrossRef] [PubMed]

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

2010

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
[CrossRef] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

2009

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

2008

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008).
[CrossRef]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

2007

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007).
[CrossRef]

2006

S. Noda, “Seeking the ultimate nanolaser,” Science314, 260–261 (2006).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

2003

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Amann, M.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Ates, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Atlasov, K. A.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Badolato, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Bajcsy, M.

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012).
[CrossRef]

Bayer, M.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Berstermann, T.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Beveratos, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Biasiol, G.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Calic, M.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Daveau, R.

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Dwir, B.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Englund, D.

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Felici, M.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Finley, J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Florian, M.

Forchel, A.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Gallo, P.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Gartner, P.

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Gies, C.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007).
[CrossRef]

Gold, P.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

Gregersen, N.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013).
[CrossRef]

N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

He, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Hennessy, K. J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Höfling, S.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

Hofmann, C.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Hommel, D.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Hu, E. L.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Imamoglu, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Iwahashi, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007).
[CrossRef]

Jahnke, F.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011).
[CrossRef] [PubMed]

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev.5, 607–633 (2011).

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007).
[CrossRef]

Jauho, A.-P.

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
[CrossRef] [PubMed]

Kaer, P.

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013).
[CrossRef] [PubMed]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
[CrossRef] [PubMed]

Kalden, J.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Kamp, M.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

Kapon, E.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

Kistner, C.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Kreiner-Møller, A.

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

Kristensen, P. T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008).
[CrossRef]

Kruse, C.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007).
[CrossRef]

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Kunishi, W.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

Kurosaka, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

Lee, E. H.

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

Lermer, M.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Liang, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Lodahl, P.

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011).
[CrossRef] [PubMed]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
[CrossRef] [PubMed]

Löffler, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Lorke, M.

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013).
[CrossRef]

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012).
[CrossRef]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007).
[CrossRef]

Madsen, K. H.

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

Majumdar, A.

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012).
[CrossRef]

Matsuo, S.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Michler, P.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Miyai, E.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

Moelbjerg, A.

M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013).
[CrossRef] [PubMed]

Mork, J.

M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013).
[CrossRef] [PubMed]

Mørk, J.

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013).
[CrossRef]

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012).
[CrossRef]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
[CrossRef] [PubMed]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008).
[CrossRef]

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Naesby, A.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008).
[CrossRef]

Nielsen, T. R.

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
[CrossRef] [PubMed]

Noda, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

S. Noda, “Seeking the ultimate nanolaser,” Science314, 260–261 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007).
[CrossRef]

Notomi, M.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Nozaki, K.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Nysteen, A.

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

Ohnishi, D.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007).
[CrossRef]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Portolan, S.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Reitzenstein, S.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Rudra, A.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Sakai, K.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

Sato, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Savona, V.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Schild, E.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

Schneider, C.

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Settnes, M.

M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013).
[CrossRef] [PubMed]

Shinya, A.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Song, J. D.

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

Sorba, L.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Stobbe, S.

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev.5, 607–633 (2011).

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Suhr, T.

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013).
[CrossRef]

N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012).
[CrossRef]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008).
[CrossRef]

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

Tarel, G.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Thourhout, D. V.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

Tighineanu, P.

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

Ulhaq, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

Ulrich, S.

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

Ulrich, S. M.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Volz, T.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Vuckovic, J.

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Wang, Q.

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011).
[CrossRef] [PubMed]

Wiersig, J.

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007).
[CrossRef]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Winger, M.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Yang, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Appl. Phys. Lett.

N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012).
[CrossRef]

M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013).
[CrossRef]

Laser Photonics Rev.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev.5, 607–633 (2011).

Nat. Nanotechnol.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

Nat. Photonics

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010).
[CrossRef]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009).
[CrossRef]

Nat. Phys.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Nature

J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. A

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007).
[CrossRef]

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012).
[CrossRef]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008).
[CrossRef]

Phys. Rev. B

K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013).
[CrossRef]

P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013).
[CrossRef]

S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008).
[CrossRef]

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013).
[CrossRef]

Phys. Rev. Lett.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007).
[CrossRef] [PubMed]

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011).
[CrossRef] [PubMed]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010).
[CrossRef] [PubMed]

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011).
[CrossRef] [PubMed]

M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009).
[CrossRef]

Science

S. Noda, “Seeking the ultimate nanolaser,” Science314, 260–261 (2006).
[CrossRef] [PubMed]

Other

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Few-QD nanolasing. (a) Spectrum of an L3 cavity with embedded QDs at high-power (1 mW) above-band excitation showing the characteristic cavity modes denoted M1–M6. The inset shows a scanning-electron micrograph of the sample. (b) Spectrum (black curve; left axis) around the M1-cavity obtained with M6-resonant excitation at 100 nW showing the M1 cavity mode and a number of excitonic peaks whose decay rates (blue circles; right axis) have been measured using time-resolved spectroscopy. (c) Spectrum around M1 obtained with M6-resonant excitation at 100 μW showing the M1-cavity peak on a pronounced background. (d) Integrated intensity as a function of excitation power for the M1-cavity mode (black squares), an exciton peak (red circles), and the background (blue triangles). The smooth s-shaped transition between linear regions (magenta lines) of the cavity power dependence is a characteristic signature of high-β lasing. Evidently, the exciton saturates around threshold (gray region) and cannot provide the gain for the laser, which is provided by the background. The linewidth (purple diamonds; right axis) shows a small narrowing consistent with high-β lasing.

Fig. 2
Fig. 2

Comparison of the experimental (black squares) and theoretical (blue lines) input-output curves. Clearly, the model cannot fit the data for small numbers of emitters although only four excitons were found to be coupled to the cavity at low excitation power. By varying the number of emitters in the model as indicated in the plot we find that 120 emitters must be included to fit the experiment. The theoretical curves have been vertically offset for clarity.

Metrics