Abstract

Compact filters and demultiplexers based on long-range air-hole assisted subwavelength (LR-AHAS) waveguides have been proposed and numerically demonstrated. The tunable reflective filters possess the characters of high extinction ratio (17.5dB) and narrow bandwidth (10.1nm). The average demultiplexing bandwidth of a 1 × 3 wavelength demultiplexer based on LR-AHAS waveguide is 17.3 nm. The drop efficiencies can be significantly enhanced up to 60% by employing proposed filters in the structure. With distinguished wavelength-filtering/dropping characters and compact footprints, the proposed filters and demultiplexers could become the fundamental signal processing components in the LR-AHAS waveguides for large-scale photonic integrations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  2. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett.28(18), 1663–1664 (2003).
    [CrossRef] [PubMed]
  3. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
    [CrossRef]
  4. R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  5. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
    [CrossRef] [PubMed]
  6. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013).
    [CrossRef] [PubMed]
  7. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010).
    [CrossRef] [PubMed]
  8. W. Zhou and X. G. Huang, “Long-range air-hole assisted subwavelength waveguides,” Nanotechnology24(23), 235203 (2013).
    [CrossRef] [PubMed]
  9. S. Zamek, D. T. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett.35(20), 3477–3479 (2010).
    [CrossRef] [PubMed]
  10. A. Boltasseva, S. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol.24(2), 912–918 (2006).
    [CrossRef]
  11. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett.31(3), 341–343 (2006).
    [CrossRef] [PubMed]
  12. T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
    [CrossRef]
  13. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  14. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B26(7), 1263–1268 (2009).
    [CrossRef]
  15. J. Tao, X. Huang, and S. Liu, “Optical characteristics of surface plasmon nanonotch structure,” J. Opt. Soc. Am. B27(7), 1430–1434 (2010).
    [CrossRef]
  16. X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011).
    [CrossRef] [PubMed]
  17. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012).
    [CrossRef] [PubMed]
  18. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19(14), 12885–12890 (2011).
    [CrossRef] [PubMed]
  19. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express18(11), 11111–11116 (2010).
    [CrossRef] [PubMed]
  20. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett.36(8), 1500–1502 (2011).
    [CrossRef] [PubMed]
  21. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011).
    [CrossRef] [PubMed]

2013 (2)

W. Zhou and X. G. Huang, “Long-range air-hole assisted subwavelength waveguides,” Nanotechnology24(23), 235203 (2013).
[CrossRef] [PubMed]

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (5)

2010 (4)

2009 (2)

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B26(7), 1263–1268 (2009).
[CrossRef]

2008 (2)

X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008).
[CrossRef] [PubMed]

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

2006 (3)

2004 (1)

2003 (1)

Atwater, H.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Ayache, M.

Boltasseva, A.

Bozhevolnyi, S.

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

A. Boltasseva, S. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol.24(2), 912–918 (2006).
[CrossRef]

Bozhevolnyi, S. I.

Chen, Z.

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

Dai, D.

Dereux, A.

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

Dionne, J.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Duan, L.

Fainman, Y.

Genov, D.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Gong, Y.

Gosciniak, J.

Han, Z.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013).
[CrossRef] [PubMed]

He, S.

Holmgaard, T.

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

Hu, F.

Huang, X.

Huang, X. G.

Itabashi, S.

Khajavikhan, M.

Koo, S.

Krasavin, A.

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

Lee, K.

Leosson, K.

Lin, X.

Lin, X. S.

Lipson, M.

Liu, S.

Liu, X.

Lu, H.

Mao, D.

Markey, L.

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

McNab, S. J.

Nezhad, M. P.

Nikolajsen, T.

Oulton, R.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Park, N.

Piao, X.

Pile, D.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Polman, A.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Shi, Y.

Shoji, T.

Sorger, V.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Sweatlock, L.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Takahashi, J.

Tan, D. T.

Tao, J.

Thylen, L.

Tsuchizawa, T.

Vlasov, Y. A.

Wang, G.

Wang, L.

Watanabe, T.

Wosinski, L.

Xu, Q.

Yamada, K.

Yi, H.

Yu, S.

Zamek, S.

Zayats, A.

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

Zhang, X.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Zhou, W.

W. Zhou and X. G. Huang, “Long-range air-hole assisted subwavelength waveguides,” Nanotechnology24(23), 235203 (2013).
[CrossRef] [PubMed]

Zhou, Z.

Zhu, J. H.

Appl. Phys. Lett. (1)

T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nanotechnology (1)

W. Zhou and X. G. Huang, “Long-range air-hole assisted subwavelength waveguides,” Nanotechnology24(23), 235203 (2013).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Opt. Express (8)

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011).
[CrossRef] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012).
[CrossRef] [PubMed]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19(14), 12885–12890 (2011).
[CrossRef] [PubMed]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express18(11), 11111–11116 (2010).
[CrossRef] [PubMed]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010).
[CrossRef] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. B (1)

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Rep. Prog. Phys. (1)

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A drawing of the LR-AHAS waveguide array with five channels. Inset at the left top is the contour profile of the field Ey (TE-mode) transmitted in the LR-AHAS waveguide at λ = 1.55 μm. The first and fourth channels counted from the left are wave guiding ones. The second, third, and fifth channels are embedded with proposed reflective filters (indicated by dashed boxes), in which the corresponding resonant light with tunable wavelength can be highly reflected back. (b) Schematic of the in-line stub-like (ILSL) filter (region) corresponding to dashed part in the fifth channel. (c) Transmission spectra of the ILSL filters with silver sidewalls (solid line) and without them (dashed line). Inset is the structure of the ILSL filter without silver sidewalls, where re = 0.38•Period, and rs = 0. (d) The contour profiles of field Ey of the ILSL filter at the wavelengths of 1.624 μm and 1.550 μm corresponding to the solid line in the spectra.

Fig. 2
Fig. 2

(a) The resonant wavelength versus the variation of radius of one air-hole in the cavity (ΔL) and versus the width of the stub (ΔW). (b) The evolution of the standing wave pattern in the ILSL filter, which is the direct proof that two silver-dielectric interfaces act as two reflection walls of the cavity and the directions of k-vectors of resonant light and incident light are almost orthogonal. (c) Transmission spectra of the ILSL filters with three different rs (0, 0.1•Period and 0.15•Period) while re is fixed at 0.38•Period and 0.41•Period for the six curves, respectively. (d) Transmission spectra of the ILSL filters with five different re while removing the defective air-hole from the ILSL region (rs = 0).

Fig. 3
Fig. 3

(a) Equivalent model based on Fano resonance from local mode of an effective low Q-factor resonator in stub junction. (b) In-line stub-like (ILSL) filter with refractive index nf marked with the yellow square in junction resonator region. The transmission spectra of ILSL filters with different refractive index (c) nf = 2, (d) nf = 3.5 and (e) nf = 4.5.

Fig. 4
Fig. 4

(a) Schematics of a single in-line stub-like channel drop filter (ILSL CDF) and a combined unit consisted of an ILSL CDF and an ILSL filter, which are indicated by the black and blue dashed boxes in the lower structure. The directions of drop and incident light are perpendicular. Based on the resonant tunneling effect, the combined unit can enhance the drop efficiency compared to the single ILSL CDF. (b) The dropping wavelength (black curve with circles) and the corresponding value of FWHM (blue circles) versus the radius of nine enlarged air-holes in the black dashed box of a single ILSL CDF. (c) The transmittance of a single ILSL CDF and a combined unit with re = 0.38•Period and rs = 0 versus the thickness of the gap and versus the center-to-center separation S, respectively.

Fig. 5
Fig. 5

(a) Schematic of a 1 × 3 wavelength demultiplexer consisted of three different ILSL CDFs acting as demultiplexing units indicated by the black dashed boxes in the LR-AHAS waveguide. Each demultiplexing unit can be replaced with the corresponding combined unit to enhance the drop efficiency based on the resonant tunneling effect. (b) Transmission spectra of three dropping channels with and without the ILSL filters (or enhancement). (c) The contour profiles of field Ey of the 1 × 3 wavelength demultiplexer at the corresponding dropping wavelengths from the first channel to the third one: 1.675 μm, 1.614 μm, and 1.554 μm.

Fig. 6
Fig. 6

(a) The equivalent waveguide (right one), in which all air-holes are replaced with the square-shape material with gradual index change from 1.3 to 3.5, considering the Bragg-effect along the propagation direction. (b) A further approximation that defines homogeneous and effective relative permittivity εeff of regions I and II to the left equivalent waveguide, for operational wavelengths far away from the resonant wavelengths of Bragg-effect.

Fig. 7
Fig. 7

(a) Real and (b) imaginary parts of the effective index for the corresponding MDM waveguide (blue line with triangular dots) and the equivalent waveguide corresponding to the right one in Fig. 6(b) (red line with round dots).

Fig. 8
Fig. 8

Silicon waveguide isolation versus the separation. Inset is the comparison of integration density between silicon and LR-AHAS waveguide arrays with the same waveguide isolation of 50.3 dB under the same plotting scale.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ(λ)=(4π/λ) 0 w s n eff (x,λ) dx+Δφ(λ)=4π L eff /λ+Δφ(λ),
λ m =4 L eff /[(2m+1)Δφ(λ)/π].
T = 4 ( cos ϕ + 1 ) / [ ( A R 2 + 3 ) ( cos ϕ + 1 ) + 2 + 2 A R sin ϕ ] ,
ϕ = 4 π 0 L n e f f ( x , λ ) d x / λ ,
exp( r Si d 1 )= ( r eff r m )( r Si + r eff )+( r eff + r m )( r Si r eff )exp(2 r eff d 2 ) ( r eff r m )( r Si r eff )+( r eff + r m )( r Si + r eff )exp(2 r eff d 2 )

Metrics