Abstract

Nonlinearity of semiconductor nanowires makes them potential frequency converters in nanoscale optoelectronics. Here we demonstrate that sum frequency generation signals can be acquired from GaAs nanowires when excited by a femtosecond laser at 1048 nm and a tunable optical parametric oscillator ranging from 1416 nm to 1770 nm. The SFG intensity is insensitive to the polarization but quite sensitive to the temporal overlap of incident lasers pulses. It is shown that they can work for pulse-width measurement of femtosecond lasers in the near infrared band. Our results suggest GaAs NWs to be excellent optical nonlinear mixers in nanoscale optoelectronics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
    [CrossRef] [PubMed]
  2. C. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).
  3. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
    [CrossRef] [PubMed]
  4. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007).
    [CrossRef] [PubMed]
  5. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
    [CrossRef] [PubMed]
  6. Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008).
    [CrossRef] [PubMed]
  7. H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
    [CrossRef] [PubMed]
  8. M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
    [CrossRef] [PubMed]
  9. R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
    [CrossRef] [PubMed]
  10. P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: What’s next?” Nano Lett.10(5), 1529–1536 (2010).
    [CrossRef] [PubMed]
  11. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express17(10), 7893–7900 (2009).
    [CrossRef] [PubMed]
  12. J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003).
    [CrossRef]
  13. F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
    [CrossRef] [PubMed]
  14. H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
    [CrossRef]
  15. R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
    [CrossRef]
  16. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
    [CrossRef] [PubMed]
  17. P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
    [CrossRef]
  18. C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011).
    [CrossRef] [PubMed]
  19. J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
    [CrossRef]
  20. X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
    [CrossRef]
  21. C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett.38(11), 1820–1822 (2013).
    [CrossRef] [PubMed]
  22. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B104(1), 1–5 (2000).
    [CrossRef]
  23. R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
    [CrossRef]
  24. W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
    [CrossRef]
  25. X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).
  26. A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005).
    [CrossRef]
  27. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron.29(12), 2928–2933 (1993).
    [CrossRef]

2013 (3)

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett.38(11), 1820–1822 (2013).
[CrossRef] [PubMed]

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

2012 (3)

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
[CrossRef] [PubMed]

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

2011 (5)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011).
[CrossRef] [PubMed]

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

2010 (4)

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

C. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: What’s next?” Nano Lett.10(5), 1529–1536 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

2007 (2)

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007).
[CrossRef] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

2006 (2)

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

2005 (1)

A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005).
[CrossRef]

2003 (1)

J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003).
[CrossRef]

2002 (1)

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

2000 (1)

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B104(1), 1–5 (2000).
[CrossRef]

1993 (1)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron.29(12), 2928–2933 (1993).
[CrossRef]

Abdenour, A.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Agarwal, R.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

Anand, S.

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

Banin, U.

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B104(1), 1–5 (2000).
[CrossRef]

Baronavski, A. P.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron.29(12), 2928–2933 (1993).
[CrossRef]

Barrelet, C.

A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005).
[CrossRef]

Barrelet, C. J.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011).
[CrossRef] [PubMed]

Brönstrup, G.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Brueck, S.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Chang-Hasnain, C.

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

Chen, R.

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Choe, H.-S.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

Christiansen, S.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Chuang, L.

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

Crankshaw, S.

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

Dai, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Das, S.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

De Franceschi, S.

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
[CrossRef] [PubMed]

Ee, H.-S.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011).
[CrossRef] [PubMed]

Ellenbogen, J. C.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

Fan, J.

Fan, W.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Fardy, M.

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: What’s next?” Nano Lett.10(5), 1529–1536 (2010).
[CrossRef] [PubMed]

Fritzsche, W.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Gao, Q.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

Gargas, D.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Gentile, P.

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
[CrossRef] [PubMed]

Grange, R.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Greytak, A.

A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005).
[CrossRef]

Gu, C.

C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett.38(11), 1820–1822 (2013).
[CrossRef] [PubMed]

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

Gu, F.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Guo, J.

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

Gutsche, C.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Hahm, J. I.

He, H.

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

Hu, M.

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett.38(11), 1820–1822 (2013).
[CrossRef] [PubMed]

Hu, Y.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

Huang, H.

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

Huang, L.

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

Huang, Y.

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

Jacobsohn, M.

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B104(1), 1–5 (2000).
[CrossRef]

Jagadish, C.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

Jennings, A. T.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

Johnson, J. C.

J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003).
[CrossRef]

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Jung, Y.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

Katsaros, G.

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
[CrossRef] [PubMed]

Kiometzis, M.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Klemic, J. F.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Krishna, S.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Kumar, N.

Kwon, S.-H.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011).
[CrossRef] [PubMed]

Ladouceur, H. D.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron.29(12), 2928–2933 (1993).
[CrossRef]

Lee, S. H.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

Leiterer, C.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Li, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Li, Y.

A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005).
[CrossRef]

Lieber, C.

A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005).
[CrossRef]

Lieber, C. M.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

Lin, Y.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Liu, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express17(10), 7893–7900 (2009).
[CrossRef] [PubMed]

Long, J. P.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007).
[CrossRef] [PubMed]

Lysov, A.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Malloy, K.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Meng, C.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Moewe, M.

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

Mongillo, M.

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
[CrossRef] [PubMed]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Nam, S.-W.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

Ning, C.

C. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Osgood, R.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Paiman, S.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

Panoiu, N.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Park, H.-G.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011).
[CrossRef] [PubMed]

Pauzauskie, P.

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Pehrsson, P. E.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007).
[CrossRef] [PubMed]

Pertsch, T.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Petersen, P.

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Prost, W.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Reece, P. J.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

Reid, D. T.

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Ren, X.

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

Richter, J.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Rowenhorst, D. J.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007).
[CrossRef] [PubMed]

Sanatinia, R.

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

Saykally, R.

J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003).
[CrossRef]

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Schaller, R.

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Sergeyev, A.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Shaw, J. K.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron.29(12), 2928–2933 (1993).
[CrossRef]

Simpkins, B. S.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007).
[CrossRef] [PubMed]

Song, Y.

Spathis, P.

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
[CrossRef] [PubMed]

Swillo, M.

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

Tan, H. H.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

Tegude, F. J.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Tong, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Tran, T.

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

Tünnermann, A.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

Wang, C.

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett.38(11), 1820–1822 (2013).
[CrossRef] [PubMed]

Wang, F.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Wang, P.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Wang, Q.

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

Wang, S.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

Xia, T.

Xiao, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Xu, J.

Yan, H.

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003).
[CrossRef]

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Yan, R.

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: What’s next?” Nano Lett.10(5), 1529–1536 (2010).
[CrossRef] [PubMed]

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yan, X.

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

Yang, P.

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: What’s next?” Nano Lett.10(5), 1529–1536 (2010).
[CrossRef] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003).
[CrossRef]

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Yang, P. D.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yang, Y.

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

Ye, X.

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

Ye, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Yu, H.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Zhang, C.

Zhang, F.

Zhang, L.

Zhang, S.

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Zhang, X.

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Zhou, W.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Acta Phys. Sin. (1)

X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).

Appl. Phys. Lett. (3)

A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005).
[CrossRef]

H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013).
[CrossRef]

R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010).
[CrossRef]

Chin. Phys. Lett. (1)

X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron.29(12), 2928–2933 (1993).
[CrossRef]

J. Phys. Chem. B (2)

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B104(1), 1–5 (2000).
[CrossRef]

J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003).
[CrossRef]

Mater. Today (1)

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

Nano Lett. (11)

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011).
[CrossRef] [PubMed]

J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011).
[CrossRef] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007).
[CrossRef] [PubMed]

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012).
[CrossRef] [PubMed]

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012).
[CrossRef] [PubMed]

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: What’s next?” Nano Lett.10(5), 1529–1536 (2010).
[CrossRef] [PubMed]

W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006).
[CrossRef]

Nat. Nanotechnol. (1)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Nature (2)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi B (1)

C. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup diagram. The filter was used to remove all photons with wavelength below 1100 nm including SHG and SFG in the PPLN crystal by the pump laser and OPO output. Dichroic mirrors DM1 and DM2 reflect the wavelength above 1400 nm and 800 nm respectively. Two mirrors (box of dashed line) were used to tune the delay of the femtosecond laser at 1048 nm. Insert: side imaging of NWs by SEM.

Fig. 2
Fig. 2

SFG signals. (a) The SHG and SFG signals from femtosecond lasers at 1048 nm and 1508 nm. (b) The power dependence of SFG signals to one beam is linear. The laser powers were measured after DM1.

Fig. 3
Fig. 3

The SFG signal is dependent on the polarization direction of incident lasers. The polarizations of the lasers were at first both horizontal. Then the polarization of 1048-nm laser was tuned by a half-wave plate while keeping polarization of OPO as constant. Dashed line: fitted curve of cos 2 θ .

Fig. 4
Fig. 4

The SFG signals generated by the 1048-nm femtosecond laser and tunable OPO from 1416 nm to 1770 nm.

Fig. 5
Fig. 5

Cross correlation of the 1048-nm femtosecond laser with the OPO beam at 1440 nm. (a) SFG signals at different delays. (b) The intensity of the SFG versus the temporal overlap of the laser and OPO pulses. The FWHM of this overlap is 240 fs. (c) Pulse-width of the 1048-nm laser and OPO measured by autocorrelator directly.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω SFG = ω 1 + ω 2
I( ω SFG ) | χ (2) | 2 ×I( ω 1 )I( ω 2 )
I ( θ ) cos 2 θ × | χ ( 2 ) | 2 × I ( ω 1 ) I ( ω 2 )
I S F G ( θ ) = ( 5 6 + 1 6 cos 2 θ ) I max
I max | χ ( 2 ) | 2 | E 1 | 2 | E 2 | 2

Metrics