Abstract

The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol.14(6), 955–966 (1996).
    [CrossRef]
  2. J. M. Yates and M. P. Rumsewicz, “Wavelength converters in dynamically reconfigurable WDM networks,” IEEE Commun. Surv. Tutor.2(2), 2–15 (1999).
  3. K. C. Lee and V. Li, “A wavelength-convertible optical network,” J. Lightwave Technol.11(5), 962–970 (1993).
    [CrossRef]
  4. H. S. Hamza and J. S. Deogun, “WDM optical interconnects: A balanced design approach,” IEEE/ACM Trans. Netw.15(6), 1565–1578 (2007).
    [CrossRef]
  5. X. Qin and Y. Yang, “Multicast connection capacity of WDM switching networks with limited wavelength conversion,” IEEE/ACM Trans. Netw.12(3), 526–538 (2004).
    [CrossRef]
  6. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).
  7. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett.23(13), 1004–1006 (1998).
    [CrossRef] [PubMed]
  8. For general aspects of fiber optics communications see G. P. Agrawal, Fiber Optic Communication Systems (John Wiley & Sons, 2002).
  9. S. Walklin and J. Conradi, “Multilevel Signaling for Increasing the Reach of 10 Gb/s Lightwave Systems,” J. Lightwave Technol.17(11), 2235–2248 (1999).
    [CrossRef]
  10. R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling,” IEEE Commun. Mag.47(8), 26–34 (2009).
    [CrossRef]
  11. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
    [CrossRef]
  12. A. E. Siegman, “Laser injection locking,” in Lasers (University Science Book, 1986), pp. 1129–1170.
  13. M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998).
    [CrossRef]
  14. H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett.10(3), 035806 (2013).
    [CrossRef]
  15. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
    [CrossRef]
  16. C. R. Fernández-Pousa and J. Capmany, “Dammann grating design of domain-engineered lithium niobate for Equalized wavelength conversion grids,” IEEE Photon. Technol. Lett.17(5), 1037–1039 (2005).
    [CrossRef]
  17. N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett.24(23), 1750–1752 (1999).
    [CrossRef] [PubMed]
  18. A. J. Torregrosa, H. Maestre, C. R. Fernández-Pousa, and J. Capmany, “Electro-Optic Reconfiguration of Quasi-Phase Matching in a Dammann Domain Grating for WDM Applications”, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 1–9, 1790–1791 (2008).
    [CrossRef]
  19. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
    [CrossRef] [PubMed]
  20. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron.6(4), 215–223 (1970).
    [CrossRef]
  21. J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
    [CrossRef]
  22. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:colquiriite lasers,” Opt. Express17(16), 14374–14388 (2009).
    [CrossRef] [PubMed]
  23. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys.39(8), 3597–3641 (1968).
    [CrossRef]
  24. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B5(7), 1412–1423 (1988).
    [CrossRef]
  25. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
    [CrossRef]
  26. H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).
  27. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
  28. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett.28(3), 194–196 (2003).
    [CrossRef] [PubMed]
  29. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  30. M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Elec. Lett.35(12), 978–980 (1999).
    [CrossRef]
  31. Telecommunication Standardization Sector of International Telecommunication Union, Recommendation ITU-T G.694.1, “Spectral grids for WDM applications: DWDM frequency grid” (2002).
  32. SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423.

2013

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett.10(3), 035806 (2013).
[CrossRef]

2011

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).

2009

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:colquiriite lasers,” Opt. Express17(16), 14374–14388 (2009).
[CrossRef] [PubMed]

R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling,” IEEE Commun. Mag.47(8), 26–34 (2009).
[CrossRef]

2007

H. S. Hamza and J. S. Deogun, “WDM optical interconnects: A balanced design approach,” IEEE/ACM Trans. Netw.15(6), 1565–1578 (2007).
[CrossRef]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

2005

C. R. Fernández-Pousa and J. Capmany, “Dammann grating design of domain-engineered lithium niobate for Equalized wavelength conversion grids,” IEEE Photon. Technol. Lett.17(5), 1037–1039 (2005).
[CrossRef]

2004

X. Qin and Y. Yang, “Multicast connection capacity of WDM switching networks with limited wavelength conversion,” IEEE/ACM Trans. Netw.12(3), 526–538 (2004).
[CrossRef]

2003

2001

J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
[CrossRef]

1999

1998

M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett.23(13), 1004–1006 (1998).
[CrossRef] [PubMed]

1996

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol.14(6), 955–966 (1996).
[CrossRef]

1993

K. C. Lee and V. Li, “A wavelength-convertible optical network,” J. Lightwave Technol.11(5), 962–970 (1993).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1988

W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B5(7), 1412–1423 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

1970

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron.6(4), 215–223 (1970).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys.39(8), 3597–3641 (1968).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).

Arbore, M. A.

Arie, A.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).

Bermúdez, V.

J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
[CrossRef]

Birge, J. R.

Blau, P.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys.39(8), 3597–3641 (1968).
[CrossRef]

Brener, I.

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
[CrossRef] [PubMed]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Elec. Lett.35(12), 978–980 (1999).
[CrossRef]

Bruner, A.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Callejo, D.

J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
[CrossRef]

Capmany, J.

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett.10(3), 035806 (2013).
[CrossRef]

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).

C. R. Fernández-Pousa and J. Capmany, “Dammann grating design of domain-engineered lithium niobate for Equalized wavelength conversion grids,” IEEE Photon. Technol. Lett.17(5), 1037–1039 (2005).
[CrossRef]

J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
[CrossRef]

Casellas, R.

R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling,” IEEE Commun. Mag.47(8), 26–34 (2009).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Chou, M. H.

Conradi, J.

Demirbas, U.

Deogun, J. S.

H. S. Hamza and J. S. Deogun, “WDM optical interconnects: A balanced design approach,” IEEE/ACM Trans. Netw.15(6), 1565–1578 (2007).
[CrossRef]

Diéguez, E.

J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
[CrossRef]

Dolev, I.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

Dominic, V.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).

Eger, D.

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
[CrossRef] [PubMed]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Elec. Lett.35(12), 978–980 (1999).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett.23(13), 1004–1006 (1998).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Fernández-Pousa, C. R.

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).

C. R. Fernández-Pousa and J. Capmany, “Dammann grating design of domain-engineered lithium niobate for Equalized wavelength conversion grids,” IEEE Photon. Technol. Lett.17(5), 1037–1039 (2005).
[CrossRef]

Fujimoto, J. G.

Gadret, G.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

Ganany-Padowicz, A.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

Gayer, O.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

Hamza, H. S.

H. S. Hamza and J. S. Deogun, “WDM optical interconnects: A balanced design approach,” IEEE/ACM Trans. Netw.15(6), 1565–1578 (2007).
[CrossRef]

Hauden, J.

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

Ihara, M.

M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998).
[CrossRef]

Inaba, H.

M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kaertner, F. X.

Katz, M.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys.39(8), 3597–3641 (1968).
[CrossRef]

Kolodziejski, L. A.

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Lee, K. C.

K. C. Lee and V. Li, “A wavelength-convertible optical network,” J. Lightwave Technol.11(5), 962–970 (1993).
[CrossRef]

Li, D.

Li, V.

K. C. Lee and V. Li, “A wavelength-convertible optical network,” J. Lightwave Technol.11(5), 962–970 (1993).
[CrossRef]

Maestre, H.

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett.10(3), 035806 (2013).
[CrossRef]

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Mangin, J.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

Martínez, R.

R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling,” IEEE Commun. Mag.47(8), 26–34 (2009).
[CrossRef]

Missey, M.

Muñoz, R.

R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling,” IEEE Commun. Mag.47(8), 26–34 (2009).
[CrossRef]

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

O’Brien, N.

Oron, M. B.

Parameswaran, K. R.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Elec. Lett.35(12), 978–980 (1999).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
[CrossRef] [PubMed]

Payne, S. A.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Pereda, J. A.

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).

J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).

Petrich, G. S.

Powers, P.

Qin, X.

X. Qin and Y. Yang, “Multicast connection capacity of WDM switching networks with limited wavelength conversion,” IEEE/ACM Trans. Netw.12(3), 526–538 (2004).
[CrossRef]

Risk, W. P.

Rumsewicz, M. P.

J. M. Yates and M. P. Rumsewicz, “Wavelength converters in dynamically reconfigurable WDM networks,” IEEE Commun. Surv. Tutor.2(2), 2–15 (1999).

Ruschin, S.

Schepler, K. L.

Sennaroglu, A.

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Smith, R. G.

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron.6(4), 215–223 (1970).
[CrossRef]

Taguchi, N.

M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998).
[CrossRef]

Torregrosa, A. J.

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett.10(3), 035806 (2013).
[CrossRef]

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).

Tsunekane, M.

M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998).
[CrossRef]

Walklin, S.

Yang, Y.

X. Qin and Y. Yang, “Multicast connection capacity of WDM switching networks with limited wavelength conversion,” IEEE/ACM Trans. Netw.12(3), 526–538 (2004).
[CrossRef]

Yates, J. M.

J. M. Yates and M. P. Rumsewicz, “Wavelength converters in dynamically reconfigurable WDM networks,” IEEE Commun. Surv. Tutor.2(2), 2–15 (1999).

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol.14(6), 955–966 (1996).
[CrossRef]

Appl. Phys. B

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009).
[CrossRef]

Appl. Phys. Lett.

J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001).
[CrossRef]

C. R. Phys.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

Elec. Lett.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Elec. Lett.35(12), 978–980 (1999).
[CrossRef]

IEEE Commun. Mag.

R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling,” IEEE Commun. Mag.47(8), 26–34 (2009).
[CrossRef]

IEEE Commun. Surv. Tutor.

J. M. Yates and M. P. Rumsewicz, “Wavelength converters in dynamically reconfigurable WDM networks,” IEEE Commun. Surv. Tutor.2(2), 2–15 (1999).

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron.6(4), 215–223 (1970).
[CrossRef]

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).

IEEE Photon. Technol. Lett.

C. R. Fernández-Pousa and J. Capmany, “Dammann grating design of domain-engineered lithium niobate for Equalized wavelength conversion grids,” IEEE Photon. Technol. Lett.17(5), 1037–1039 (2005).
[CrossRef]

IEEE/ACM Trans. Netw.

H. S. Hamza and J. S. Deogun, “WDM optical interconnects: A balanced design approach,” IEEE/ACM Trans. Netw.15(6), 1565–1578 (2007).
[CrossRef]

X. Qin and Y. Yang, “Multicast connection capacity of WDM switching networks with limited wavelength conversion,” IEEE/ACM Trans. Netw.12(3), 526–538 (2004).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys.39(8), 3597–3641 (1968).
[CrossRef]

J. Lightwave Technol.

K. C. Lee and V. Li, “A wavelength-convertible optical network,” J. Lightwave Technol.11(5), 962–970 (1993).
[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol.14(6), 955–966 (1996).
[CrossRef]

S. Walklin and J. Conradi, “Multilevel Signaling for Increasing the Reach of 10 Gb/s Lightwave Systems,” J. Lightwave Technol.17(11), 2235–2248 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett.10(3), 035806 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).

Other

For general aspects of fiber optics communications see G. P. Agrawal, Fiber Optic Communication Systems (John Wiley & Sons, 2002).

A. J. Torregrosa, H. Maestre, C. R. Fernández-Pousa, and J. Capmany, “Electro-Optic Reconfiguration of Quasi-Phase Matching in a Dammann Domain Grating for WDM Applications”, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 1–9, 1790–1791 (2008).
[CrossRef]

A. E. Siegman, “Laser injection locking,” in Lasers (University Science Book, 1986), pp. 1129–1170.

Telecommunication Standardization Sector of International Telecommunication Union, Recommendation ITU-T G.694.1, “Spectral grids for WDM applications: DWDM frequency grid” (2002).

SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423.

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic heterodyne frequency converter. (b) Schematic of the compact and versatile wavelength converter proposed.

Fig. 2
Fig. 2

(a) Experimental configuration of the V-folded cavity for intra-cavity wavelength conversion by single-pass difference frequency generation. (b) Experimental laser tuning curve. Inset: laser beam profile.

Fig. 3
Fig. 3

Theoretical QPM tuning characteristics for the PPSLT crystal (L = 20 mm and Λ = 22.1μm) for different pump wavelengths at room temperature (T = 25.0°C)

Fig. 4
Fig. 4

Temperature optimization in the tunable output conversion of a fixed input channel.

Fig. 5
Fig. 5

Converted wavelengths by an intra-cavity DFG process with a 792 nm pump wavelength (λp) for different signal wavelengths at RT (25°C). (a) Conversion of a tunable input. (b) Conversion of a single input of variable power. The vertical scale in the figures is 5 dB/div.

Fig. 6
Fig. 6

Tunable wavelength conversion of a single- and two channel inputs by tuning the DFG pump and optimally adjusting the PPSLT temperature between 25 and 50°C.

Fig. 7
Fig. 7

Simultaneous wavelength conversion in the C-band of (a) two input wavelengths at 1550.0 and 1559.3 nm, and (b) three input wavelengths at 1550.6, 1554.5 and 1557.8 nm when a 792 nm pump wave is used at RT (25°C)

Fig. 8
Fig. 8

Evolution of the optical intensity of the idler (red) and signal (blue) predicted by modeling for two different intra-cavity pump powers with beam waist sizes of 30, 100 and 100 µm for pump, idler and signal respectively for (a) our working conditions and (b) with higher intra-cavity power leading to parametric gain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η= P i P s = 16 π 2 d eff 2 L P p ε 0 n p n i c λ s λ i 2 ×h(ξ)
d eff d eff (Δk)= 1 L 0 L d * (z)· e iΔk·z dz

Metrics