Abstract

Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
    [CrossRef]
  2. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  3. T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
    [CrossRef]
  4. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express14(20), 9211–9216 (2006).
    [CrossRef] [PubMed]
  5. C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
    [CrossRef]
  6. H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B92(2), 243–246 (2008).
    [CrossRef]
  7. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express20(6), 6357–6364 (2012).
    [CrossRef] [PubMed]
  8. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
    [CrossRef]
  9. Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express21(12), 14362–14367 (2013).
    [CrossRef] [PubMed]
  10. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
    [CrossRef]
  11. M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
    [CrossRef]
  12. V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
    [CrossRef]
  13. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
    [CrossRef]
  14. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
    [CrossRef]
  15. C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
    [CrossRef] [PubMed]
  16. C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
    [CrossRef]
  17. C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011).
    [CrossRef] [PubMed]
  18. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
    [CrossRef]
  19. C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
    [CrossRef]
  20. Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
    [CrossRef]
  21. T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures,” Opt. Express19(7), 6487–6492 (2011).
    [CrossRef] [PubMed]
  22. W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
    [CrossRef]
  23. W. Streifer, R. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
    [CrossRef]
  24. W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides,” IEEE J. Quantum Electron.12(7), 422–428 (1976).
    [CrossRef]
  25. W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron.13(4), 134–141 (1977).
    [CrossRef]
  26. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
    [CrossRef]
  27. A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).
  28. CAMFR, http://camfr.sourceforge.net .
  29. S. Riechel, “Organic semiconductor lasers with two-dimensional distributed feedback,” PhD thesis (Ludwig-Maximilians-Universität München, 2002).
  30. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett.26(9), 593–595 (2001).
    [CrossRef] [PubMed]
  31. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
    [CrossRef]

2013 (1)

2012 (5)

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express20(6), 6357–6364 (2012).
[CrossRef] [PubMed]

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

2011 (3)

2010 (2)

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

2008 (2)

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B92(2), 243–246 (2008).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

2007 (2)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

2006 (2)

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

2004 (1)

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

2001 (1)

1998 (1)

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

1997 (2)

V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
[CrossRef]

1996 (2)

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

1977 (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron.13(4), 134–141 (1977).
[CrossRef]

1976 (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides,” IEEE J. Quantum Electron.12(7), 422–428 (1976).
[CrossRef]

1975 (1)

W. Streifer, R. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Andersson, M. R.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Becker, E.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Berleb, S.

Bog, U.

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

Boj, P. G.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

Bräse, S.

Brütting, W.

Bulovic, V.

V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Burnham, R. D.

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron.13(4), 134–141 (1977).
[CrossRef]

W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides,” IEEE J. Quantum Electron.12(7), 422–428 (1976).
[CrossRef]

W. Streifer, R. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

Burrows, P.

V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Calzado, E. M.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

Christiansen, M. B.

Dehm, S.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Diaz-Garcia, M. A.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Díaz-García, M. A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

Dobbertin, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Farrell, T.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

Feldmann, J.

Forrest, S.

V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Gerken, M.

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

Giesen, A.

W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
[CrossRef]

Gombert, A.

Grivas, C.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

Gupta, R.

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

Guttmann, M.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

Hauss, J.

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

Heeger, A. J.

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Hide, F.

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Hinze, P.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Huska, K.

Jakobs, P.-J.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

Johannes, H. H.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

Johannes, H.-H.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Juarros, A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

Kanibolotsky, A. L.

Karnutsch, C.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

Kaschke, J.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Klinkhammer, S.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express20(6), 6357–6364 (2012).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011).
[CrossRef] [PubMed]

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Kolew, A.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

Kowalsky, W.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Kozlov, V.

V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Krauss, T. F.

Kristensen, A.

Kröger, M.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Lemmer, U.

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express20(6), 6357–6364 (2012).
[CrossRef] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett.26(9), 593–595 (2001).
[CrossRef] [PubMed]

Liu, X.

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express20(6), 6357–6364 (2012).
[CrossRef] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Maestle, R.

W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
[CrossRef]

Mappes, T.

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express20(6), 6357–6364 (2012).
[CrossRef] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

McGehee, M. D.

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

Mechau, N.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Merino, S.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

Miller, E. K.

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

Moses, D.

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

Mückl, A. G.

Navarro-Fuster, V.

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

Nehls, B. S.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

O’ Faolain, L.

Otaduy, D.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

Pang, Z.

Pei, Q

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Plass, W.

W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
[CrossRef]

Pollnau, M.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

Punke, M.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

Quintana, J. A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

Rabe, T.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Retolaza, A.

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

Ribierre, J.-C.

Riechel, S.

Riedl, T.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Sakata, H.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B92(2), 243–246 (2008).
[CrossRef]

Samuel, I. D. W.

Scherf, U.

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

Schneider, D.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Schwartz, B. J.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Scifres, D. R.

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron.13(4), 134–141 (1977).
[CrossRef]

W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides,” IEEE J. Quantum Electron.12(7), 422–428 (1976).
[CrossRef]

W. Streifer, R. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Shen, Y.

Skabara, P. J.

Streifer, W.

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron.13(4), 134–141 (1977).
[CrossRef]

W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides,” IEEE J. Quantum Electron.12(7), 422–428 (1976).
[CrossRef]

W. Streifer, R. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

Stroisch, M.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

Sudau, K.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Takeuchi, H.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B92(2), 243–246 (2008).
[CrossRef]

Tessler, N.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Tomiki, M.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B92(2), 243–246 (2008).
[CrossRef]

Tsiminis, G.

Turnbull, G. A.

Valouch, S.

Vanderheiden, S.

Vannahme, C.

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express20(6), 6357–6364 (2012).
[CrossRef] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

Vasdekis, A. E.

Villalvilla, J. M.

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

Voss, A.

W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
[CrossRef]

Vragovic, I.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

Wang, J.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Wang, Y.

Wang, Z.

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

Wegener, M.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Weimann, T.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Wittig, K.

W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
[CrossRef]

Wittwer, V.

Yamashita, K.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B92(2), 243–246 (2008).
[CrossRef]

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

Zhai, T.

Zhang, X.

Zhao, D.

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

Appl. Phys. B (1)

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B92(2), 243–246 (2008).
[CrossRef]

Appl. Phys. Express (1)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express5(7), 072101 (2012).
[CrossRef]

Appl. Phys. Lett. (6)

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett.101(22), 223303 (2012).
[CrossRef]

Z. Wang, J. Hauss, C. Vannahme, U. Bog, S. Klinkhammer, D. Zhao, M. Gerken, T. Mappes, and U. Lemmer, “Nanograting transfer for light extraction in organic light-emitting devices,” Appl. Phys. Lett.98(14), 143105 (2011).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett.72(13), 1536–1538 (1998).
[CrossRef]

T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. S. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Laser threshold reduction in an all-spiro guest-host system,” Appl. Phys. Lett.85(10), 1659–1661 (2004).
[CrossRef]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (3)

W. Streifer, R. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides,” IEEE J. Quantum Electron.12(7), 422–428 (1976).
[CrossRef]

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron.13(4), 134–141 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett.19(10), 741–743 (2007).
[CrossRef]

J. Appl. Phys. (2)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys.112(4), 043104 (2012).
[CrossRef]

Laser Photonics Rev. (1)

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

Microelectron. Eng. (1)

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng.87(5–8), 693–695 (2010).
[CrossRef]

Nature (2)

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Opt. Commun. (1)

W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun.134(1–6), 21–24 (1997).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Science (1)

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Other (3)

A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).

CAMFR, http://camfr.sourceforge.net .

S. Riechel, “Organic semiconductor lasers with two-dimensional distributed feedback,” PhD thesis (Ludwig-Maximilians-Universität München, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic illustration of the nanograting transfer. The deposited grating mold is pressed onto the unstructured organic semiconductor gain layer and then (b) detached from the device, completing the transfer of nanostructured Alq3 and NPB. (c) SEM image of the top surface of the transferred gratings and (d) of the cross section of the device.

Fig. 2
Fig. 2

(a) Pump energy at threshold for varying pump spot diameters with the long axis of the elliptical pump spot perpendicular (D1) and parallel (D2) to the grating lines. (b) Fluence at threshold for varying pump spot area. Inset: Input-output characteristic of the DFB laser at wavelength of 622.5 nm measured at a pump spot area of 3.6·10−3 cm2.

Fig. 3
Fig. 3

Calculated laser threshold fluence in comparison to experiments results for varying (a) pump spot area and (b) coupling strength with the long axis of the elliptical pump spot perpendicular (D1) and parallel (D2).

Fig. 4
Fig. 4

(a) Exemplary atomic force image of the surface corrugation on an organic small molecule DFB laser after Alq3:DCM thermal evaporation. (b) Atomic force micrographs of two surface corrugation patterns before and after thermal evaporation. (c) Laser threshold fluences and threshold pump energy varying with pump spot area. Inset: laser spectrum with the peak at 640.6 nm.

Fig. 5
Fig. 5

(a) Exemplary atomic force image of the surface corrugation of an organic DFB laser after spin coating of F8BT:MEH-PPV. (b) Atomic force micrographs of two surface corrugation patterns before and after spin coating. (c) Laser threshold fluences and threshold pump energy for varying pump spot area. Inset: laser spectrum with the peak at 623.6 nm.

Fig. 6
Fig. 6

(a) Exemplary atomic force image of the surface corrugation of an organic DFB laser after horizontal dipping of F8BT:MEH-PPV. (b) Atomic force micrographs of two surface corrugation patterns before and after horizontal dipping. (c) Laser threshold fluences and threshold pump energy for varying pump spot area. Inset: laser spectrum with the peak at 607.6 nm.

Fig. 7
Fig. 7

Laser threshold fluences for varying pump spot areas for various film thickness modulation configurations fabricated via nanograting transfer, thermal evaporation, spin coating, and horizontal dipping.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R'+( g 0 iδ)R=i κ eff S,
S'+( g 0 iδ)S=i κ eff R,
R(z)= r 1 e γz + r 2 e γz ,
S(z)= s 1 e γz + s 2 e γz ,
γ 2 = ( g 0 iδ) 2 + κ eff 2 .
κ eff =±iγ/sinhγL.
F th 2 g 0 n eff d 0 h ν p σ SE ΓA n slab .

Metrics