Abstract

We propose and demonstrate a novel CAP-ROF system based on multi-level carrier-less amplitude and phase modulation (CAP) 64QAM with high spectrum efficiency for mm-wave fiber-wireless transmission. The performance of novel CAP modulation with high order QAM, for the first time, is investigated in the mm-wave fiber-wireless transmission system. One I/Q modulator is used for mm-wave generation and base-band signal modulation based on optical carrier suppression (OCS) and intensity modulation. Finally, we demonstrated a 24-Gb/s CAP-64QAM radio-over-fiber (ROF) system over 40-km stand single-mode-fiber (SMMF) and 1.5-m 38-GHz wireless transmission. The system operation factors are also experimentally investigated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, G.-K. Chang, Z. Jia, A. Chowdhury, M.-F. Huang, H.-C. Chien, Y.-Y. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol.28(16), 2376–2397 (2010).
    [CrossRef]
  2. Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
    [CrossRef]
  3. Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
    [CrossRef]
  4. Q. Chang, T. Ye, and Y. Su, “Generation of optical carrier suppressed-differential phase shift keying (OCS-DPSK) format using one dual-parallel Mach-Zehnder modulator in radio over fiber systems,” Opt. Express16(14), 10421–10426 (2008).
    [CrossRef] [PubMed]
  5. S. Ghafoor and L. Hanzo, “Sub-carrier-multiplexed duplex 64-QAM radio-over-fiber transmission for distributed antennas,” Communication Lett.15(12), 1368–1371 (2011).
    [CrossRef]
  6. M. Zhou, J. Ma, Y. Shao, C. Yu, and X. Xin, “10Gbit/s QAM dual multiplexing of the optical millimeter-wave generated by quadrupling the frequency of the electrical RF carrier,” in Proc. ACP2011, paper 830916.
  7. Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express21(3), 3708–3714 (2013).
    [CrossRef] [PubMed]
  8. C. Liu, W. Jian, H. Chien, A. Chowdhury, and G. Chang, “Experimental analyses and optimization of equalization techniques for 60-GHz OFDM radio-over-fiber system,” in Proc. OFC2010, paper JWA54.
    [CrossRef]
  9. M. Zhu, S. Fan, L. Zhang, C. Liu, T. Wang, and G. Chang, “High speed MIMO-OFDM wireless data transport in 60-GHz radio-over-fiber system multiplexed by optical TDM,” in Proc. OFC2013, paper OTu3D.4.
    [CrossRef]
  10. Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol.28(16), 2423–2429 (2010).
    [CrossRef]
  11. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express19(25), 24944–24949 (2011).
    [CrossRef] [PubMed]
  12. X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber-wireless transmission system of 108 Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency,” Opt. Lett.37(24), 5106–5108 (2012).
    [CrossRef] [PubMed]
  13. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol.31(9), 1367–1373 (2013).
    [CrossRef]
  14. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011).
    [CrossRef] [PubMed]
  15. M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
    [CrossRef]
  16. G. Stepniak and J. Siuzdak, “Transmission beyond 2 Gbit/s in a 100 m SI POF with multilevel CAP modulation and digital equalization,” in Proc. of OFC2013, paper NTu3J.5.
    [CrossRef]
  17. L. Tao, Y. Wang, Y. Gao, A. P. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express21(5), 6459–6465 (2013).
    [CrossRef] [PubMed]
  18. M. Iglesias Olmedo, Z. Tianjian, J. Bevensee Jensen, Z. Qiwen, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of MultiCAP dignal in 14 GHz bandwidth per Lane,” in Proc. OFC2013, paper PDP5C.10.
  19. J. L. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. H. White, “Gigabit NRZ, CAP and optical OFDM systems over POF links using LEDs,” Opt. Express20(20), 22284–22289 (2012).
    [CrossRef] [PubMed]
  20. J. D. Ingham, R. V. Penty, and I. H. White, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical data communication links,” in Proc. OFC2011, OThZ3.
  21. J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express21(16), 18842–18848 (2013).
    [CrossRef] [PubMed]

2013 (4)

2012 (4)

J. L. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. H. White, “Gigabit NRZ, CAP and optical OFDM systems over POF links using LEDs,” Opt. Express20(20), 22284–22289 (2012).
[CrossRef] [PubMed]

X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber-wireless transmission system of 108 Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency,” Opt. Lett.37(24), 5106–5108 (2012).
[CrossRef] [PubMed]

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

2011 (3)

2010 (2)

2008 (1)

2006 (1)

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Arlunno, V.

Borkowski, R.

Caballero, A.

Cao, Z.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol.28(16), 2423–2429 (2010).
[CrossRef]

Chang, G. K.

Chang, G.-K.

Chang, Q.

Chen, L.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol.28(16), 2423–2429 (2010).
[CrossRef]

Chi, N.

Chien, H.-C.

Chowdhury, A.

Cunningham, D. G.

Dai, Y.

Deng, L.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express19(25), 24944–24949 (2011).
[CrossRef] [PubMed]

Dogadaev, A.

Dong, Z.

Gao, Y.

Geng, L.

Ghafoor, S.

S. Ghafoor and L. Hanzo, “Sub-carrier-multiplexed duplex 64-QAM radio-over-fiber transmission for distributed antennas,” Communication Lett.15(12), 1368–1371 (2011).
[CrossRef]

Hanzo, L.

S. Ghafoor and L. Hanzo, “Sub-carrier-multiplexed duplex 64-QAM radio-over-fiber transmission for distributed antennas,” Communication Lett.15(12), 1368–1371 (2011).
[CrossRef]

Hsueh, Y.-Y.

Huang, M.-F.

Jensen, J.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

Jensen, J. B.

Ji, Y.

Jia, Z.

Jian, W.

Karinou, F.

Lau, A. P.

Li, F.

Li, J.

Li, X.

Lin, J.

Liu, C.

Lu, C.

Monroy, I. T.

Othman, M. B.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

Pang, X.

Pedersen, J. S.

Pei, Y.

Penty, R. V.

Pham, T. T.

Rodes, R.

Roubeau, F.

Shao, Y.

Shu, Q.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

Siuzdak, J.

Su, Y.

Tang, Q.

Tao, L.

Turkiewicz, J.

Wang, W.

Wang, Y.

Wei, J. L.

White, I. H.

Wieckowski, M.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011).
[CrossRef] [PubMed]

Xia, M.

Xu, K.

Ye, T.

Yu, J.

Yu, X.

Zhang, A.

Zhang, J.

Zhang, X.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

Zibar, D.

Communication Lett. (1)

S. Ghafoor and L. Hanzo, “Sub-carrier-multiplexed duplex 64-QAM radio-over-fiber transmission for distributed antennas,” Communication Lett.15(12), 1368–1371 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (7)

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express21(16), 18842–18848 (2013).
[CrossRef] [PubMed]

Q. Chang, T. Ye, and Y. Su, “Generation of optical carrier suppressed-differential phase shift keying (OCS-DPSK) format using one dual-parallel Mach-Zehnder modulator in radio over fiber systems,” Opt. Express16(14), 10421–10426 (2008).
[CrossRef] [PubMed]

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express19(25), 24944–24949 (2011).
[CrossRef] [PubMed]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011).
[CrossRef] [PubMed]

J. L. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. H. White, “Gigabit NRZ, CAP and optical OFDM systems over POF links using LEDs,” Opt. Express20(20), 22284–22289 (2012).
[CrossRef] [PubMed]

Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express21(3), 3708–3714 (2013).
[CrossRef] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express21(5), 6459–6465 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (6)

G. Stepniak and J. Siuzdak, “Transmission beyond 2 Gbit/s in a 100 m SI POF with multilevel CAP modulation and digital equalization,” in Proc. of OFC2013, paper NTu3J.5.
[CrossRef]

M. Iglesias Olmedo, Z. Tianjian, J. Bevensee Jensen, Z. Qiwen, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of MultiCAP dignal in 14 GHz bandwidth per Lane,” in Proc. OFC2013, paper PDP5C.10.

J. D. Ingham, R. V. Penty, and I. H. White, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical data communication links,” in Proc. OFC2011, OThZ3.

M. Zhou, J. Ma, Y. Shao, C. Yu, and X. Xin, “10Gbit/s QAM dual multiplexing of the optical millimeter-wave generated by quadrupling the frequency of the electrical RF carrier,” in Proc. ACP2011, paper 830916.

C. Liu, W. Jian, H. Chien, A. Chowdhury, and G. Chang, “Experimental analyses and optimization of equalization techniques for 60-GHz OFDM radio-over-fiber system,” in Proc. OFC2010, paper JWA54.
[CrossRef]

M. Zhu, S. Fan, L. Zhang, C. Liu, T. Wang, and G. Chang, “High speed MIMO-OFDM wireless data transport in 60-GHz radio-over-fiber system multiplexed by optical TDM,” in Proc. OFC2013, paper OTu3D.4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The mm-wave generation and signal modulation based on I/Q modulator.

Fig. 2
Fig. 2

Schematic diagrams of transmitter and receiver based on CAP m-QAM for CAP signal generation and processing.

Fig. 3
Fig. 3

Experimental setup. (AWG: arbitrary waveform generator; ECL: external cavity laser; EDFA: Erbium-doped fiber amplifier; TOF: tunable optical filter; TA: tunable attenuator; EA: electrical amplifier; ADC: analog-to-digital-convertor)

Fig. 4
Fig. 4

The optical spectrum of (a) the output of lower arm MZM2 with mm-wave tones, (b) the output after I/Q modulator with both base-band signal and mm-wave tones, and (c) the output after OBPF with only base-band signal and the left side-band first order mm-tone.

Fig. 5
Fig. 5

The FFT spectrum of (a) the received 24-Gb/s CAP-64QAM mm-wave signal at 38-GHz carrier after ADC and (b) the down-converted base-band 24-Gb/s CAP-64QAM signal.

Fig. 6
Fig. 6

The BER results versus receiver optical power for BTB case, after 40-km fiber transmission only and after 40km fiber and 1.5m wireless transmission.

Fig. 7
Fig. 7

(a) The optical spectrum of base-band signal and mm-wave tone under different DC bias 1 offset, 0.8V and 0V; (b) The BER versus the offset of DC bias 1 after 40-km SSMF and 1.5-m wireless transmission.

Fig. 8
Fig. 8

(a) The BER versus the offset of DC bias 2 after 40-km SSMF and 1.5-m wireless transmission; (b) The BER versus the CSR after 40-km SSMF and 1.5-m wireless transmission.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t ) = 1 2 E c × cos [ π 2 ( α 1 S B B ( t ) + β 1 ) ] 1 2 E c × [ π 2 ( α 1 S B B ( t ) + Δ β 1 ) ]
E out (t)= 1 2 E c ×{ [ π 2 ( α 1 S BB (t)+Δ β 1 )]+sin( π 2 β 2 )exp[j(2π f s t+ π 2 + φ ps )] }
S(t)=[ s I (t) f I (t) s Q (t) f Q (t)]
r I (t)=R(t)m f I (t), r Q (t)=R(t)m f Q (t)

Metrics