Abstract

This paper presents an optical element capable of multiplexing two diffraction patterns for two orthogonal linear polarizations, based on the use of non-resonant metamaterial cross elements. The metamaterial cross elements provide unique building blocks for engineering arbitrary birefringence. As a proof-of-concept demonstration, we present the design and experimental characterization of a polarization multiplexed blazed diffraction grating and a polarization multiplexed computer-generated hologram, for the telecommunication wavelength of λ = 1.55 μm. A quantitative study of the polarization multiplexed grating reveals that this approach yields a very large polarization contrast ratio. The results show that metamaterials can form the basis for a versatile and compact platform useful in the design of multi-functional photonic devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
    [CrossRef] [PubMed]
  2. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  4. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010).
    [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  6. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater.12(1), 25–28 (2012).
    [CrossRef] [PubMed]
  7. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  8. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
    [CrossRef]
  9. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012).
    [CrossRef] [PubMed]
  10. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
    [CrossRef]
  11. F. Xu, J. E. Ford, and Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt.34(2), 256–266 (1995).
    [CrossRef] [PubMed]
  12. R. K. Kostuk, M. Kato, and Y.-T. Huang, “Polarization Properties Of Substrate-Mode Holographic Interconnects,” Appl. Opt.29(26), 3848–3854 (1990).
    [CrossRef] [PubMed]
  13. A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “Form birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt.49(23), 4355–4361 (2010).
    [CrossRef] [PubMed]
  14. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett.21(18), 1513–1515 (1996).
    [CrossRef] [PubMed]
  15. U. Levy, H.-C. Kim, C.-H. Tsai, and Y. Fainman, “Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett.30(16), 2089–2091 (2005).
    [CrossRef] [PubMed]
  16. M. S. Mirotznik, D. M. Pustai, D. W. Prather, and J. N. Mait, “Design of Two-Dimensional Polarization-Selective Diffractive Optical Elements with Form-Birefringent Microstructures,” Appl. Opt.43(32), 5947–5954 (2004).
    [CrossRef] [PubMed]
  17. W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, “Polarization-Multiplexed Diffractive Optical Elements Fabricated by Subwavelength Structures,” Appl. Opt.41(1), 96–100 (2002).
    [CrossRef] [PubMed]
  18. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express14(9), 3785–3791 (2006).
    [CrossRef] [PubMed]
  19. E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable Imaging Systems Using Elliptical Nanowires,” Nano Lett.11(10), 4299–4303 (2011).
    [CrossRef] [PubMed]
  20. B. Kress, Applied digital optics: from micro-optics to nanophotonics (Wiley, Chichester, U.K., 2009).
  21. B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
    [CrossRef] [PubMed]
  22. A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5(6), 357–359 (2011).
    [CrossRef]
  23. V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
    [CrossRef]
  24. S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
    [CrossRef] [PubMed]
  25. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
    [CrossRef] [PubMed]
  26. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  27. Y. Zhao and A. Alù, “Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates,” Nano Lett.13(3), 1086–1091 (2013).
    [CrossRef] [PubMed]
  28. Y. J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express19(24), 24411–24423 (2011).
    [CrossRef] [PubMed]
  29. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  30. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
    [CrossRef]
  31. B. Goebel, L. L. Wang, and T. Tschudi, “Multilayer technology for diffractive optical elements,” Appl. Opt.35(22), 4490–4493 (1996).
    [CrossRef] [PubMed]
  32. R. W. Gerchber and W. O. Saxton, “Pratical Algorithm for determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237–246 (1972).
  33. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010).
    [CrossRef] [PubMed]
  34. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
    [CrossRef]
  35. T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  36. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011).
    [CrossRef]
  37. T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999).
    [CrossRef]

2013 (2)

V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
[CrossRef]

Y. Zhao and A. Alù, “Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates,” Nano Lett.13(3), 1086–1091 (2013).
[CrossRef] [PubMed]

2012 (5)

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
[CrossRef] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater.12(1), 25–28 (2012).
[CrossRef] [PubMed]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012).
[CrossRef] [PubMed]

2011 (6)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5(6), 357–359 (2011).
[CrossRef]

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011).
[CrossRef]

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable Imaging Systems Using Elliptical Nanowires,” Nano Lett.11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Y. J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express19(24), 24411–24423 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

2008 (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

2006 (2)

2005 (2)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

U. Levy, H.-C. Kim, C.-H. Tsai, and Y. Fainman, “Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett.30(16), 2089–2091 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (2)

W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, “Polarization-Multiplexed Diffractive Optical Elements Fabricated by Subwavelength Structures,” Appl. Opt.41(1), 96–100 (2002).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

1999 (1)

T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999).
[CrossRef]

1996 (2)

1995 (2)

F. Xu, J. E. Ford, and Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt.34(2), 256–266 (1995).
[CrossRef] [PubMed]

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

1990 (1)

1983 (1)

1972 (1)

R. W. Gerchber and W. O. Saxton, “Pratical Algorithm for determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237–246 (1972).

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Alexander, R. W.

Alù, A.

Y. Zhao and A. Alù, “Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates,” Nano Lett.13(3), 1086–1091 (2013).
[CrossRef] [PubMed]

Aubry, A.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
[CrossRef] [PubMed]

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Cai, W.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Chellappan, K. V.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011).
[CrossRef]

Chemla, D. S.

T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999).
[CrossRef]

Cheng, C. C.

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Crozier, K. B.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable Imaging Systems Using Elliptical Nanowires,” Nano Lett.11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Danner, A. J.

A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5(6), 357–359 (2011).
[CrossRef]

Dodge, M. R.

Eilenberger, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
[CrossRef] [PubMed]

Emoto, A.

Erden, E.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011).
[CrossRef]

Ermer, H. K.

V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
[CrossRef]

Fainman, Y.

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Ford, J. E.

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Gerchber, R. W.

R. W. Gerchber and W. O. Saxton, “Pratical Algorithm for determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237–246 (1972).

Goebel, B.

Ha, T.

T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999).
[CrossRef]

Hamamoto, T.

Helgert, C.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Huang, Y.-T.

Ichioka, Y.

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Jokerst, N. M.

Kang, K.-Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kato, M.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Kawatsuki, N.

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
[CrossRef] [PubMed]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

Kim, H.-C.

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kley, E.-B.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Konishi, T.

Kostuk, R. K.

Kundtz, N.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010).
[CrossRef] [PubMed]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater.12(1), 25–28 (2012).
[CrossRef] [PubMed]

Larouche, S.

Laurence, T. A.

T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999).
[CrossRef]

Lederer, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Lee, Y.-H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Leonhardt, U.

A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5(6), 357–359 (2011).
[CrossRef]

Levy, U.

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Libertun, A. R.

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Lipworth, G.

Long, L. L.

Maier, S. A.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012).
[CrossRef] [PubMed]

Mait, J. N.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Manabe, S.

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Mathine, D. L.

Matsui, S.

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Mirotznik, M. S.

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
[CrossRef] [PubMed]

Nishi, M.

Okada, M.

Ono, H.

Ordal, M. A.

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Pertsch, T.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Peyghambarian, N.

Peyman, G.

Piazza, A.

V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
[CrossRef]

Piestun, R.

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Prather, D. W.

Pustai, D. M.

Rockstuhl, C.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Rosen, J.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

Saxton, W. O.

R. W. Gerchber and W. O. Saxton, “Pratical Algorithm for determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237–246 (1972).

Schaefer, D.

V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
[CrossRef]

Scherer, A.

Schonbrun, E.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable Imaging Systems Using Elliptical Nanowires,” Nano Lett.11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Schwiegerling, J.

Seo, K.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable Imaging Systems Using Elliptical Nanowires,” Nano Lett.11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Setzpfandt, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012).
[CrossRef] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater.12(1), 25–28 (2012).
[CrossRef] [PubMed]

Y. J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express19(24), 24411–24423 (2011).
[CrossRef] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smolyaninov, I. I.

V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
[CrossRef]

Smolyaninova, V. N.

V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Sun, P. C.

Surman, P.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011).
[CrossRef]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Toyota, H.

Tsai, C.-H.

Tsai, Y. J.

Tsai, Y.-J.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Tschudi, T.

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Tünnermann, A.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Tyan, R. C.

Tyc, T.

A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5(6), 357–359 (2011).
[CrossRef]

Tyler, T.

Urey, H.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Valley, P.

Walther, B.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Wang, L. L.

Ward, C. A.

Weiss, S.

T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999).
[CrossRef]

Xu, F.

Yotsuya, T.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Yu, W.

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates,” Nano Lett.13(3), 1086–1091 (2013).
[CrossRef] [PubMed]

Adv. Mater. (1)

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012).
[CrossRef] [PubMed]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

J. Phys. Chem. B (1)

T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999).
[CrossRef]

Nano Lett. (2)

Y. Zhao and A. Alù, “Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates,” Nano Lett.13(3), 1086–1091 (2013).
[CrossRef] [PubMed]

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable Imaging Systems Using Elliptical Nanowires,” Nano Lett.11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Nat. Mater. (4)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010).
[CrossRef] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater.12(1), 25–28 (2012).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Nat. Photonics (3)

A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5(6), 357–359 (2011).
[CrossRef]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Optik (Stuttg.) (1)

R. W. Gerchber and W. O. Saxton, “Pratical Algorithm for determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237–246 (1972).

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013).
[CrossRef]

Phys. Rev. Lett. (1)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011).
[CrossRef]

Science (6)

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012).
[CrossRef] [PubMed]

Other (1)

B. Kress, Applied digital optics: from micro-optics to nanophotonics (Wiley, Chichester, U.K., 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Engineered birefringence using metamaterial cross elements. (a) Schematics of the metamaterial unit cell design. The unit cell size is 250 nm × 250 nm × 100 nm. The geometry of metamaterial cross element is defined by arm lengths (Lx and Ly), line-width of 30 nm and thickness of 30 nm. The electric field is oriented in the x-y plane and the electromagnetic wave propagates along the z direction. (b) By controlling the arm lengths of Lx and Ly in each individual crosses, we can obtain a wide range of birefringence. . Each line is separated by equally spaced values ΔLx or ΔLy of 18.33 nm. In this work, we chose moderate values of refractive indices bounded inside the red box. (c) Imaginary parts of refractive indices—κx (left) and κy (right).

Fig. 2
Fig. 2

Design flowchart of metamaterial based polarization multiplexed hologram. (a) Desired patterns for x-and y-polarization. (b) The phase holograms that are generated independently from the two desired patterns. (c) A Scanning electron micrograph showing a multilayer metamaterials construction combining the two phase holograms into a single optical component. (d) The simulated reconstructions of the 8 layer metamaterial holograms for the two orthogonal linear polarizations. *The Blue Devil is a registered trademark of Duke University

Fig. 3
Fig. 3

Scanning electron micrograph of the fabricated eight layer samples. (a,b) Polarization-multiplexed blazed diffraction grating. The refractive index profiles for x-polarization (top) and for y-polarization (bottom) are plotted in (a) to emphasize the two distinct diffraction periods—Λx = 8 μm and Λy = 6 μm. (c) Polarization-multiplexed computer-generated hologram. The images were taken after the lift-off process.

Fig. 4
Fig. 4

Characterization results of the 8 layer polarization multiplexed hologram. Measured images of the + 1st diffracted order of the hologram for linear polarizations at the specified orientation angles. All images were normalized by their maximum values. The three images at the bottom (30, 45, 60 degrees) are enhanced with a Gamma-filter (γ = 0.75) to highlight the crosstalk. *The Blue Devil is a registered trademark of Duke University

Fig. 5
Fig. 5

Characterization results of an 8 layer metamaterial polarization multiplexed grating. (a) Images captured at the + 1st diffracted order for polarization angles at 0, 45, and 90 degrees (from top to bottom), respectively. (b) Surface plots of the line profiles across the peaks of the spots for polarization angles from 0 to 90 degrees. (c) The relative intensity for two linear polarizations as a function of polarization angles. (d) The experimentally obtained polarization contrast ratio for x-polarization (red circle) and y-polarization (blue circle).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Polarization contrast ratio{ P +1 ( Λ x ) P +1 ( Λ y ) ,for x-polarized beam P +1 ( Λ y ) P +1 ( Λ x ) ,for y-polarized beam

Metrics