Abstract

We describe a novel approach for CMOS-compatible passively temperature insensitive silicon based optical devices using titanium oxide cladding which has a negative thermo-optic (TO) effect. We engineer the mode confinement in Si and TiO2 such that positive TO of Si is exactly cancelled out by negative TO of TiO2. We demonstrate robust operation of the resulting device over 35 degrees.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
CMOS-compatible athermal silicon microring resonators

Biswajeet Guha, Bernardo B. C. Kyotoku, and Michal Lipson
Opt. Express 18(4) 3487-3493 (2010)

Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process

Gun-Duk Kim, Hak-Soon Lee, Chang-Hyun Park, Sang-Shin Lee, Boo Tak Lim, Hee Kyoung Bae, and Wan-Gyu Lee
Opt. Express 18(21) 22215-22221 (2010)

Vertically stacked microring waveguides for coupling between multiple photonic planes

Jonathan T. Bessette and Donghwan Ahn
Opt. Express 21(11) 13580-13591 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967)
    [Crossref]
  2. P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).
  3. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007).
    [Crossref] [PubMed]
  4. J. Teng, P. Dumon, W. Bogaerts, H. B. Zhang, X. G. Jian, X. Y. Han, M. S. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
    [Crossref] [PubMed]
  5. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).
  6. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [Crossref] [PubMed]
  7. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
    [Crossref] [PubMed]
  8. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).
  9. W. Zortman, A. Lentine, D. Trotter, and M. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012).
    [Crossref]
  10. C. Qiu and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” in CLEO: Science and Innovations (Optical Society of America, 2011).
  11. E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).
  12. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010).
    [Crossref] [PubMed]
  13. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).
    [Crossref] [PubMed]
  14. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253–2255 (2012).
    [Crossref] [PubMed]
  15. S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
    [Crossref]
  16. V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
    [Crossref]
  17. B. Guha and M. Lipson, “Athermal silicon ring resonator with bi-material cantilever for passive thermal feedback,” in CLEO: Science and Innovations (Optical Society of America, 2013).
  18. S. S. Djordjevic, K. Shang, B. Guan, S. T. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
    [Crossref] [PubMed]
  19. F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
    [Crossref]
  20. J. T. Choy, J. D. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Loncar, “Integrated TiO2resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
    [Crossref] [PubMed]
  21. J. D. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Loncar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2waveguides for microphotonic devices,” Opt. Express 20, 23821–23831 (2012).
    [Crossref] [PubMed]

2013 (2)

S. S. Djordjevic, K. Shang, B. Guan, S. T. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref] [PubMed]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

2012 (4)

2010 (3)

2009 (2)

J. Teng, P. Dumon, W. Bogaerts, H. B. Zhang, X. G. Jian, X. Y. Han, M. S. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref] [PubMed]

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
[Crossref]

2007 (1)

1999 (1)

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

1967 (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967)
[Crossref]

Ackert, J. J.

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).

Adibi, A.

P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Alipour, P.

P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Asghari, M.

Baets, R.

Basak, J.

Bergman, K.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
[Crossref] [PubMed]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).

Biberman, A.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

Bogaerts, W.

Bradley, J. D.

Burgess, I. B.

Campbell, S. A.

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

Chan, J.

Chen, L.

Cheung, S. T.

Choy, J. T.

Dejneka, A.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
[Crossref]

Deotare, P. B.

DeRose, C. T.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).

Djordjevic, S. S.

Dong, P.

Dumon, P.

Eftekhar, A. A.

P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Evans, C. C.

Feng, D.

Feng, N.-N.

Gilmer, D. C.

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

Gladfelter, W. L.

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

Gondarenko, A.

Guan, B.

Guha, B.

Han, M.

Han, X. Y.

He, B.

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

Jastrabik, L.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
[Crossref]

Jian, X. G.

Kim, H.-S.

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

Knights, A. P.

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).

Krishnamoorthy, A. V.

Kyotoku, B. B. C.

Lentine, A.

W. Zortman, A. Lentine, D. Trotter, and M. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012).
[Crossref]

Liang, H.

Liao, L.

Lipson, M.

Liu, H.-F.

Logan, D. F.

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).

Loncar, M.

Luck, D. L.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).

Lynnyk, A.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
[Crossref]

Ma, T.

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

Markovin, P.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
[Crossref]

Mazur, E.

Momeni, B.

P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Moresco, M.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

Morthier, G.

Nielson, G. N.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).

Padmaraju, K.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
[Crossref] [PubMed]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).

Parsy, F.

Phillips, K. C.

Preston, K.

Qian, W.

Qiu, C.

C. Qiu and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” in CLEO: Science and Innovations (Optical Society of America, 2011).

Qiu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Reshef, O.

Shafiiha, R.

Shah Hosseini, E.

P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Shang, K.

Spring, A. M.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Stojanovic, V.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

Sun, C.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

Teng, J.

Timurdogan, E.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

Trepakov, V.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
[Crossref]

Trotter, D.

W. Zortman, A. Lentine, D. Trotter, and M. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012).
[Crossref]

Trotter, D. C.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).

Varshni, Y.

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967)
[Crossref]

Wang, A.

Watts, M.

W. Zortman, A. Lentine, D. Trotter, and M. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012).
[Crossref]

Watts, M. R.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).

Xu, Q.

C. Qiu and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” in CLEO: Science and Innovations (Optical Society of America, 2011).

Yokoyama, S.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Yoo, S.

Young, R. W.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).

Yu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Zhang, H. B.

Zhao, M. S.

Zheng, X.

Zhu, X.

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).

Zortman, W.

W. Zortman, A. Lentine, D. Trotter, and M. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012).
[Crossref]

Appl. Phys. Lett. (1)

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

IBM journal of research and development (1)

S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development 43, 383–392 (1999).
[Crossref]

New J. Phys. (1)

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys. 11, 083024 (2009).
[Crossref]

Opt. Express (7)

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010).
[Crossref] [PubMed]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).
[Crossref] [PubMed]

S. S. Djordjevic, K. Shang, B. Guan, S. T. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. B. Zhang, X. G. Jian, X. Y. Han, M. S. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
[Crossref] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
[Crossref] [PubMed]

J. D. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Loncar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2waveguides for microphotonic devices,” Opt. Express 20, 23821–23831 (2012).
[Crossref] [PubMed]

Opt. Lett. (3)

Physica (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967)
[Crossref]

Other (7)

P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).

W. Zortman, A. Lentine, D. Trotter, and M. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012).
[Crossref]

C. Qiu and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” in CLEO: Science and Innovations (Optical Society of America, 2011).

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).

B. Guha and M. Lipson, “Athermal silicon ring resonator with bi-material cantilever for passive thermal feedback,” in CLEO: Science and Innovations (Optical Society of America, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Resonance wavelength sensitivity to temperature ( λ 0 T in nm/K) for (a) TE and (b) TM polarizations. Si guiding layer is 220nm thick. Black dashed line represents the optimum waveguide width and cladding thickness for athermal operation. Energy flux density of optical modes in a 250nm wide waveguide is shown at the top. TiO2 cladding thickness is 300nm.

Fig. 2
Fig. 2

(a) TiO2 cladded Si microring resonator. Inset shows a false colored SEM cross section of the waveguide. (b) AFM image of the TiO2 surface.

Fig. 3
Fig. 3

(a) Measured resonance sensitivity to temperature as a function of waveguide width, for TE and TM modes. Resonance sensitivity decreases significantly as mode is delocalized into TiO2 cladding. Theoretical curves are obtained assuming 200nm thick TiO2 layer. (b) Temperature dependence of the resonance for hybrid Si-TiO2 resonator (athermal TM mode, right) compared to that of a conventional Si resonator (left).

Fig. 4
Fig. 4

(a) BER vs. temperature for 5Gbps data transmission. (b) BER vs. received power for 1 °C temperature fluctuation.

Tables (1)

Tables Icon

Table 1: Summary of previously reported temperature stabilization schemes

Metrics