Abstract

We present the first in-band diode-pumped TDFAs operating in the 2 µm wavelength region and test their suitability as high performance amplifiers in potential future telecommunication networks. We demonstrate amplification over a 240 nm wide window in the range 1810 – 2050 nm with up to 36 dB gain and noise figure as low as 4.5 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
    [CrossRef]
  2. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010).
    [CrossRef]
  3. D. J. Richardson, “Filling the light pipe,” Science330(6002), 327–328 (2010).
    [CrossRef] [PubMed]
  4. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
    [CrossRef]
  5. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7(5), 354–362 (2013).
    [CrossRef]
  6. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  7. V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. G. Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express20(26), B428–B438 (2012).
    [CrossRef] [PubMed]
  8. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express19(17), 16665–16671 (2011).
    [CrossRef] [PubMed]
  9. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express20(27), 28398–28408 (2012).
    [CrossRef] [PubMed]
  10. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012).
    [CrossRef]
  11. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  12. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express17(26), 23468–23473 (2009).
    [CrossRef] [PubMed]
  13. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
    [CrossRef]
  14. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “First demonstration of 2µm data transmission in a low-loss hollow core photonic bandgap fiber,” in ECOC (2012), paper Th.3.A.5.
  15. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express21(8), 9289–9297 (2013).
    [CrossRef] [PubMed]
  16. R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
    [CrossRef]
  17. T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett.13(5), 433–435 (2001).
    [CrossRef]
  18. T. Kasamatsu, Y. Yano, and T. Ono, “1.49 µm band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol.20(10), 1826–1838 (2002).
    [CrossRef]

2013

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7(5), 354–362 (2013).
[CrossRef]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express21(8), 9289–9297 (2013).
[CrossRef] [PubMed]

2012

2011

2010

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010).
[CrossRef]

D. J. Richardson, “Filling the light pipe,” Science330(6002), 327–328 (2010).
[CrossRef] [PubMed]

2009

2005

2002

2001

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett.13(5), 433–435 (2001).
[CrossRef]

1994

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

Akamatsu, T.

Alam, S. U.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Birks, T.

Bolle, C. A.

Chandrasekhar, S.

Chen, H.

Corbett, B.

Cotter, D.

Couny, F.

Daniel, J. M. O.

de Waardt, H.

Dhar, A.

Dimarcello, F. V.

Ellis, A. D.

Essiambre, R.-J.

Farr, L.

Fini, J. M.

Fishteyn, M.

Gnauck, A. H.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Hanna, D. C.

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Heidt, A. M.

Inan, B.

Ishida, I.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

Jakobsen, C.

Jung, Y.

Kasamatsu, T.

T. Kasamatsu, Y. Yano, and T. Ono, “1.49 µm band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol.20(10), 1826–1838 (2002).
[CrossRef]

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett.13(5), 433–435 (2001).
[CrossRef]

Knight, J.

Koonen, A. M.

Kosihba, M.

Kuschnerov, M.

Lauder, R. D. T.

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

Li, Z.

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express21(8), 9289–9297 (2013).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Lingle, R.

Liu, X.

Lyngsø, J. K.

Mangan, B.

Mangan, B. J.

Mason, M.

Matsuo, S.

McCurdy, A.

Monberg, E. M.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7(5), 354–362 (2013).
[CrossRef]

Nielsen, L. G.

Numkam Fokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Okuyama, K.

Ono, T.

T. Kasamatsu, Y. Yano, and T. Ono, “1.49 µm band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol.20(10), 1826–1838 (2002).
[CrossRef]

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett.13(5), 433–435 (2001).
[CrossRef]

Peckham, D. W.

Percival, R. M.

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Poletti, F.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. G. Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express20(26), B428–B438 (2012).
[CrossRef] [PubMed]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Randel, S.

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7(5), 354–362 (2013).
[CrossRef]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express21(8), 9289–9297 (2013).
[CrossRef] [PubMed]

V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. G. Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express20(26), B428–B438 (2012).
[CrossRef] [PubMed]

D. J. Richardson, “Filling the light pipe,” Science330(6002), 327–328 (2010).
[CrossRef] [PubMed]

Roberts, P.

Roberts, P. J.

Ryf, R.

Sabert, H.

Sahu, J. K.

Saitoh, K.

Sasaki, Y.

Sierra, A.

Slavík, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Sleiffer, V. A. J. M.

St J Russell, P.

Sun, Y.

Szebesta, D.

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

Takenaga, K.

Taunay, T. F.

Tomlinson, A.

Tropper, A. C.

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

van Uden, R. G. H.

Veljanovski, V.

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Williams, D.

Williams, J. R.

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

Winfield, R.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

Winzer, P. J.

Yan, M. F.

Yano, Y.

T. Kasamatsu, Y. Yano, and T. Ono, “1.49 µm band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol.20(10), 1826–1838 (2002).
[CrossRef]

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett.13(5), 433–435 (2001).
[CrossRef]

Zhao, J.

Zhu, B.

Electron. Lett.

R. M. Percival, D. Szebesta, J. R. Williams, R. D. T. Lauder, A. C. Tropper, and D. C. Hanna, “Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems,” Electron. Lett.30(19), 1598–1599 (1994).
[CrossRef]

IEEE Commun. Mag.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett.13(5), 433–435 (2001).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7(5), 354–362 (2013).
[CrossRef]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Opt. Express

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express21(8), 9289–9297 (2013).
[CrossRef] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
[CrossRef] [PubMed]

V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. G. Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express20(26), B428–B438 (2012).
[CrossRef] [PubMed]

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express19(17), 16665–16671 (2011).
[CrossRef] [PubMed]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express20(27), 28398–28408 (2012).
[CrossRef] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005).
[CrossRef] [PubMed]

J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express17(26), 23468–23473 (2009).
[CrossRef] [PubMed]

Science

D. J. Richardson, “Filling the light pipe,” Science330(6002), 327–328 (2010).
[CrossRef] [PubMed]

Other

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “First demonstration of 2µm data transmission in a low-loss hollow core photonic bandgap fiber,” in ECOC (2012), paper Th.3.A.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. TLS: tunable laser source; ISO: isolator; LD: laser diode; WDM: wavelength division multiplexer; TDF: thulium-doped fiber.

Fig. 2
Fig. 2

Detailed wideband performance of TDFA-C using 4 m of gain fiber. (a) Wavelength dependence of small signal gain (seed power: −20 dBm), saturated gain (seed power: 0 dBm), and noise figure (NF) for both gain curves. (b) Output spectra over the tested wavelength band for 0 dBm seed power, measured with 0.5 nm OSA resolution.

Fig. 3
Fig. 3

(a) Small-signal gain and noise figure (NF) of the TDFA incorporating different lengths of fibers. Inset: measured signal loss of the WDM coupler. (b) Combined amplified spectra (measured with 0.5 nm OSA resolution) and corresponding NF of TDFA-S/C/L with −20 dBm input signal power. We expect the working region of TDFA-S to extend further towards the shorter wavelength (shown by the patterned shaded area) with low-loss passive components becoming available.

Fig. 4
Fig. 4

TDFA-C output power at 1900 nm. The amplifier was seeded by 0 dBm input signal. The launched pump power of each diode was measured at the common port of the corresponding WDM coupler.

Metrics