Abstract

We present experimentally and theoretically the evolution of high spatial frequency periodic ripples (HSFL) fabricated on SiC crystal surfaces by irradiation with femtosecond laser pulses in a vacuum chamber. At early stages the seed defects are mainly induced by laser pulse irradiation, leading to the reduction in the ablation threshold fluence. By observing the evolution of these surface structures under illumination with successive laser pulses, the nanocraters are made by nanoablation at defects in the SiC surface. The Mie scattering by the nanoablated craters grows the periodic ripples. The number of HSFL is enhanced with increasing pulse number. At the edge of the laser spot the Mie scattering process is still dominant, causing the fabrication of HSFL. On the periphery of the spot SiC substrate remains a semiconductor state because the electron density in the SiC induced by laser irradiation is kept low. The HSFL observed is very deep in the SiC surface by irradiating with many laser pulses. These experimental results are well explained by 3D FDTD (three-dimensional finite-difference time-domain) simulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature386(6621), 143–149 (1997).
    [CrossRef]
  3. J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002).
    [CrossRef] [PubMed]
  4. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
    [CrossRef]
  5. J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
    [CrossRef]
  6. J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
    [CrossRef]
  7. J. F. Young, J. E. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984).
    [CrossRef]
  8. M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995).
    [CrossRef]
  9. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
    [CrossRef]
  10. N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
    [CrossRef]
  11. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
    [CrossRef]
  12. X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008).
    [CrossRef] [PubMed]
  13. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
    [CrossRef] [PubMed]
  14. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
    [CrossRef] [PubMed]
  15. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
    [CrossRef] [PubMed]
  16. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
    [CrossRef] [PubMed]
  17. A. Hamdorf, M. Olson, C.-H. Lin, L. Jiang, J. Zhou, H. Xiao, and H.-L. Tsai, “Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering,” Opt. Lett.36(17), 3353–3355 (2011).
    [CrossRef] [PubMed]
  18. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser induced periodic surface structures upon irradiation of silicon by femtosecond laser pulse,” J. Appl. Phys.106(10), 104910 (2009).
    [CrossRef]
  19. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  20. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008).
    [CrossRef] [PubMed]
  21. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
    [CrossRef] [PubMed]
  22. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
    [CrossRef]
  23. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
    [CrossRef]
  24. S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
    [CrossRef]
  25. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36(2), 229–231 (2011).
    [CrossRef] [PubMed]
  26. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008).
    [CrossRef] [PubMed]
  27. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of Nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012).
    [CrossRef] [PubMed]
  28. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
    [CrossRef] [PubMed]
  29. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  30. E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
    [CrossRef]
  31. S. H. Kim, I. B. Sohn, and S. Jeong, “Fabrication of uniform nanogrooves on 6H-SiC by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process.102(1), 55–59 (2011).
    [CrossRef]
  32. M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
    [CrossRef]
  33. A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
    [CrossRef]
  34. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
    [CrossRef]
  35. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
    [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  37. N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
    [CrossRef]
  38. S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999).
    [CrossRef]
  39. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12(4), 661–664 (1973).
    [CrossRef] [PubMed]
  40. L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23(11), 607–609 (1973).
    [CrossRef]
  41. S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
    [CrossRef]

2012 (2)

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

F. Liang, R. Vallée, and S. L. Chin, “Mechanism of Nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (2)

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

2009 (10)

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
[CrossRef] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser induced periodic surface structures upon irradiation of silicon by femtosecond laser pulse,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

2008 (4)

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008).
[CrossRef] [PubMed]

Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008).
[CrossRef] [PubMed]

E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
[CrossRef]

2007 (1)

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

2006 (3)

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2003 (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
[CrossRef]

2002 (2)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002).
[CrossRef] [PubMed]

1999 (1)

S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

1995 (2)

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995).
[CrossRef]

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

1984 (1)

J. F. Young, J. E. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984).
[CrossRef]

1983 (2)

J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

1973 (2)

N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12(4), 661–664 (1973).
[CrossRef] [PubMed]

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23(11), 607–609 (1973).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Audouard, E.

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Beresna, M.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Bloembergen, N.

Bock, M.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

Bonse, J.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser induced periodic surface structures upon irradiation of silicon by femtosecond laser pulse,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Botton, G. A.

E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
[CrossRef]

Cai, L.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Chen, W. M.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Chin, S. L.

Cho, S.-H.

S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999).
[CrossRef]

Colombier, J. P.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Crawford, T. H.

E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

DeShazer, L. G.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23(11), 607–609 (1973).
[CrossRef]

Diebold, E. D.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Doorn, S. K.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Dörr, D.

Drechsler, M.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Dufft, D.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Dusser, B.

Emelyanov, A. V.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Epple, M.

Ezaki, M.

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Faure, N.

Forsh, P. A.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

Hamdorf, A.

Hashida, M.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Hashimoto, S.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

Haugen, H. K.

E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
[CrossRef]

Hertwig, A.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
[CrossRef]

Hiller, J.

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002).
[CrossRef] [PubMed]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Hofman, D. M.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Hsu, E. M.

E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
[CrossRef]

Hu, J.

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Janzén, E.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Jeong, S.

S. H. Kim, I. B. Sohn, and S. Jeong, “Fabrication of uniform nanogrooves on 6H-SiC by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process.102(1), 55–59 (2011).
[CrossRef]

Jiang, L.

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Jourlin, M.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kashkarov, P. K.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Kautek, W.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Kawahara, K.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
[CrossRef]

Kazanskii, A. G.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Kazansky, P.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Khenkin, M. V.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Kim, S. H.

S. H. Kim, I. B. Sohn, and S. Jeong, “Fabrication of uniform nanogrooves on 6H-SiC by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process.102(1), 55–59 (2011).
[CrossRef]

Kinoshita, K.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

Konkov, O. I.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Konstantinov, A. O.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Kordina, O.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser induced periodic surface structures upon irradiation of silicon by femtosecond laser pulse,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Kukin, A. V.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Kumagai, H.

S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999).
[CrossRef]

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995).
[CrossRef]

Kumai, R.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

Le Harzic, R.

Lenzner, M.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Leung, K. M.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23(11), 607–609 (1973).
[CrossRef]

Li, G.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Li, J.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Liang, C.

Liang, F.

Lin, C.-H.

Lu, Q.

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Mack, N. H.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Maeda, N.

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

Martin, S.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
[CrossRef]

Matsuo, S.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

Maunders, C.

E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
[CrossRef]

Mazur, E.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Mendelsohn, J. D.

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002).
[CrossRef] [PubMed]

Meyer, B. K.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Midorikawa, K.

S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999).
[CrossRef]

Miyaji, G.

Miyanishi, T.

Miyazaki, K.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Monemar, B.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Mori, A.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
[CrossRef]

Murai, T.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Nedyalkov, N. N.

Neumeier, M.

Newnam, B. E.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23(11), 607–609 (1973).
[CrossRef]

Obara, G.

Obara, M.

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999).
[CrossRef]

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995).
[CrossRef]

Ohlin, C. A.

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Okamuro, K.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Olson, M.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Preston, J.

J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Preston, J. F.

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Rosenfeld, A.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser induced periodic surface structures upon irradiation of silicon by femtosecond laser pulse,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

Rubner, M. F.

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002).
[CrossRef] [PubMed]

Sagan, Z.

Sakabe, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Sauer, D.

Sawada, H.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Sipe, J. E.

J. F. Young, J. E. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984).
[CrossRef]

J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soder, H.

Sohn, I. B.

S. H. Kim, I. B. Sohn, and S. Jeong, “Fabrication of uniform nanogrooves on 6H-SiC by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process.102(1), 55–59 (2011).
[CrossRef]

Son, N. T.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stracke, F.

Sun, Q.

Tagawa, N.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
[CrossRef]

Takada, M.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
[CrossRef]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Terakawa, M.

Terukov, E. I.

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Tokita, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Tomita, T.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

Toyoda, K.

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995).
[CrossRef]

Tsai, H.-L.

Ueno, S.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

Vallée, R.

van Driel, H.

J. F. Young, J. E. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984).
[CrossRef]

J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

van Driel, H. M.

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Volm, D.

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

Wang, H.

Wang, X.

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Wu, B.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Xiao, H.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Yamaguchi, M.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

Yang, J.

Yang, Y.

Ye, X.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Young, J. F.

J. F. Young, J. E. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984).
[CrossRef]

J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Zhang, N.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Zhou, J.

Zhou, M.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Zhu, X.

Zimmermann, H.

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23(11), 607–609 (1973).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995).
[CrossRef]

E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

S. H. Kim, I. B. Sohn, and S. Jeong, “Fabrication of uniform nanogrooves on 6H-SiC by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process.102(1), 55–59 (2011).
[CrossRef]

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Biomaterials (1)

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995).
[CrossRef]

J. Appl. Phys. (4)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser induced periodic surface structures upon irradiation of silicon by femtosecond laser pulse,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009).
[CrossRef]

Langmuir (1)

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002).
[CrossRef] [PubMed]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Opt. Commun. (1)

S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (5)

J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

J. F. Young, J. E. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Semiconductors (1)

A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012).
[CrossRef]

Tribol. Lett. (1)

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of 3D FDTD simulation system. Small rod-like crater is centered on 4H-SiC substrate.

Fig. 2
Fig. 2

Pulse number dependence of laser damage threshold for 4H-SiC by femtosecond laser pulse. DT: damage threshold, N: pulse number.

Fig. 3
Fig. 3

SEM images of the 4H-SiC surfaces after the femtosecond laser irradiation. (a) F = 0.4 J/cm2, 100 pulses, (b) F = 0.4 J/cm2, 500 pulses, (c) F = 0.3 J/cm2, 100, and (d) F = 0.3 J/cm2, 500 pulses. White arrow shows the electric field vector of the incident laser.

Fig. 4
Fig. 4

SEM images of the 4H-SiC surfaces after the femtosecond laser irradiation at 0.3 J/cm2. (a) 50 pulses, (b) 100 pulses. White arrow represents the electric field vector of the incident laser.

Fig. 5
Fig. 5

Magnified SEM images of the area surrounded by the white dashed line in Fig. 4. (a) SEM at normal incidence, (b) SEM at 57 deg. inclined to the surface.

Fig. 6
Fig. 6

Distribution of simulated optical field intensity on xy plane (z = −2.5 nm) induced by a single rod-like crater inside the 4H-SiC. The incident electric field strength is 1 V/m at 800 nm. (a) crater width: 140 nm, length: 700 nm, depth: 200 nm. (b) crater width: 100 nm, length: 1500nm, depth: 200 nm. The magnified images of (a) and (b) are shown in (c) and (d), respectively.

Fig. 7
Fig. 7

Distribution of simulated optical field intensity on xz plane induced by single crater inside the 4H-SiC at y = 0 nm. The incident electric field strength is 1 V/m at 800 nm. (a) crater width: 140 nm, length: 700 nm, depth: 200 nm, (b) crater width: 100 nm, length: 1500 nm, depth: 200 nm .White line shows the SiC substrate surface.

Fig. 8
Fig. 8

SEM images of the 4H-SiC surfaces after the femtosecond laser pulse irradiation with constant fluence of 0.3 J/cm2. (a) 20 pulses, (b) 50 pulses, (c) 100 pulses, and (d) 200 pulses.

Fig. 9
Fig. 9

SEM images of the 4H-SiC surface after the 50 pulse irradiation of femtosecond laser at constant fluence of 0.4 J/cm2. (a) Total area of the irradiation. (b) Periodic ripples near the edge of the irradiated area, which is in the white dashed circle in (a). (c) Periodic ripples in the center of the irradiated area, which is in the white solid circle in (a).

Fig. 10
Fig. 10

Refractive index and extinction coefficient as a function of electron density in SiC.

Fig. 11
Fig. 11

Optical intensity distribution on exited SiC substrate surface with a crater (width: 100 nm, length: 1500 nm, depth: 200 nm). The incident electric field strength is 1 V/m at 800 nm. (a) xy plane, (b) magnified image of (a), and (c) xz plane.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ * = ( n+ik ) 2 = ε ˜ +Δ ε ˜ Drude
Δ ε ˜ Drude = e 2 N e ε 0 m opt * m e ω 2 [ 1+ i ω τ D ]

Metrics