Abstract

We analyze the color performance and system efficiency of three commonly employed liquid crystal display modes with a blue LED-pumped red and green quantum dots (QDs) backlight. Based on the measured QD emission spectra, we can achieve 115% color gamut in CIE 1931 and 140% in CIE 1976 color space, while keeping the same energy efficiency as conventional backlights. Next, we apply multi-objective optimization method to refine the QD emission spectra and find a fundamental tradeoff between display system efficiency and color gamut. This systematic photometric analysis also provides useful guidelines for further optimizing QD backlight design and display system efficiency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48(3), 03B001 (2009).
    [CrossRef]
  2. D. Barnes, “LCD or OLED, who wins?” SID Symposium Digest of Technical Papers, 44, 26–27 (2013).
    [CrossRef]
  3. Y. Ukai, “TFT-LCDs as the future leading role in FPD,” SID Symposium Digest of Technical Papers, 44, 28–31 (2013).
    [CrossRef]
  4. J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
    [CrossRef]
  5. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
    [CrossRef] [PubMed]
  6. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond graylevel response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol.6(2), 49–51 (2010).
    [CrossRef]
  7. Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
    [CrossRef]
  8. S. Kobayashi, S. Mikoshiba, and S. Lim, LCD Backlights (Wiley, 2009).
  9. M. Anandan, “Progress of LED backlights for LCDs,” J. Soc. Inf. Disp.16(2), 287–310 (2008).
    [CrossRef]
  10. G. Harbers, S. J. Bierhuizen, and M. R. Krames, “Performance of high power light emitting diodes in display illumination applications,” J. Display Technol.3(2), 98–109 (2007).
    [CrossRef]
  11. R. Lu, S. Gauza, and S. T. Wu, “LED-lit LCD TVs,” Mol. Cryst. Liq. Cryst.488(1), 246–259 (2008).
    [CrossRef]
  12. R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Display Technol.2(4), 319–326 (2006).
    [CrossRef]
  13. R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express2, 022401 (2009).
    [CrossRef]
  14. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
    [CrossRef]
  15. S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol.2(2), R3026–R3030 (2013).
    [CrossRef]
  16. S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale5(12), 5205–5214 (2013).
    [CrossRef] [PubMed]
  17. J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, “Perspective on synthesis, device structures, and printing processes for quantum dot displays,” Opt. Mater. Express2(5), 594–628 (2012).
    [CrossRef]
  18. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics7(1), 13–23 (2013).
    [CrossRef]
  19. T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express18(1), 340–347 (2010).
    [CrossRef] [PubMed]
  20. P. Zhong, G. X. He, and M. H. Zhang, “Optimal spectra of white light-emitting diodes using quantum dot nanophosphors,” Opt. Express20(8), 9122–9134 (2012).
    [CrossRef] [PubMed]
  21. J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
    [CrossRef]
  22. J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” SID Symposium Digest of Technical Papers, 43, 895–896 (2012).
    [CrossRef]
  23. I. H. Campbell and B. K. Crone, “Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots,” Appl. Phys. Lett.92(4), 043303 (2008).
    [CrossRef]
  24. S. Coe-Sullivan, “Quantum dot developments,” Nat. Photonics3(6), 315–316 (2009).
    [CrossRef]
  25. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
    [CrossRef] [PubMed]
  26. http://hexus.net/tech/news/displays/50621-sonys-triluminos-displays-use-quantum-dot-technology /.
  27. J. H. Lee, D. N. Liu, and S. T. Wu, Introduction to Flat Panel Displays (Wiley, 2008).
  28. J. Morovič, Color Gamut Mapping (Wiley, 2008).
  29. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  30. M. Schadt and W. Helfrich, “Voltage-depenent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–128 (1971).
    [CrossRef]
  31. H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Display Technol.3(4), 361–370 (2007).
    [CrossRef]
  32. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
    [CrossRef]
  33. C. A. C. Coello and G. B. Lamont, Applications of Multi-Objective Evolutionary Algorithms (World Scientificc, 2004).
  34. J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE International Conference on Neural Networks IV. pp. 1942–1948 (1995).
    [CrossRef]
  35. M. Reyes-Sierra and C. A. C. Coello, “Multi-Objective particle swarm optimizers: a survey of the state-of-the-art,” Int. J. Comput. Intell. Res.2, 287–308 (2006).

2013 (4)

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol.2(2), R3026–R3030 (2013).
[CrossRef]

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale5(12), 5205–5214 (2013).
[CrossRef] [PubMed]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics7(1), 13–23 (2013).
[CrossRef]

2012 (2)

2011 (1)

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

2010 (3)

2009 (3)

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express2, 022401 (2009).
[CrossRef]

S. Coe-Sullivan, “Quantum dot developments,” Nat. Photonics3(6), 315–316 (2009).
[CrossRef]

M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48(3), 03B001 (2009).
[CrossRef]

2008 (3)

M. Anandan, “Progress of LED backlights for LCDs,” J. Soc. Inf. Disp.16(2), 287–310 (2008).
[CrossRef]

R. Lu, S. Gauza, and S. T. Wu, “LED-lit LCD TVs,” Mol. Cryst. Liq. Cryst.488(1), 246–259 (2008).
[CrossRef]

I. H. Campbell and B. K. Crone, “Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots,” Appl. Phys. Lett.92(4), 043303 (2008).
[CrossRef]

2007 (2)

2006 (2)

M. Reyes-Sierra and C. A. C. Coello, “Multi-Objective particle swarm optimizers: a survey of the state-of-the-art,” Int. J. Comput. Intell. Res.2, 287–308 (2006).

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Display Technol.2(4), 319–326 (2006).
[CrossRef]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-depenent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–128 (1971).
[CrossRef]

Allen, P.

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol.2(2), R3026–R3030 (2013).
[CrossRef]

Anandan, M.

M. Anandan, “Progress of LED backlights for LCDs,” J. Soc. Inf. Disp.16(2), 287–310 (2008).
[CrossRef]

Bae, W. K.

Barnes, D.

D. Barnes, “LCD or OLED, who wins?” SID Symposium Digest of Technical Papers, 44, 26–27 (2013).
[CrossRef]

Bawendi, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Bawendi, M. G.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics7(1), 13–23 (2013).
[CrossRef]

Bierhuizen, S. J.

Breen, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

Bulovic, V.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics7(1), 13–23 (2013).
[CrossRef]

Campbell, I. H.

I. H. Campbell and B. K. Crone, “Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots,” Appl. Phys. Lett.92(4), 043303 (2008).
[CrossRef]

Char, K.

Chen, J.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” SID Symposium Digest of Technical Papers, 43, 895–896 (2012).
[CrossRef]

Chen, K. M.

Chen, Y.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Cheng, K. L.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Chida, H.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Choi, H. C.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
[CrossRef]

Chung, I.

Coello, C. A. C.

M. Reyes-Sierra and C. A. C. Coello, “Multi-Objective particle swarm optimizers: a survey of the state-of-the-art,” Int. J. Comput. Intell. Res.2, 287–308 (2006).

Coe-Sullivan, S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol.2(2), R3026–R3030 (2013).
[CrossRef]

S. Coe-Sullivan, “Quantum dot developments,” Nat. Photonics3(6), 315–316 (2009).
[CrossRef]

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

Colby, R.

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

Crone, B. K.

I. H. Campbell and B. K. Crone, “Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots,” Appl. Phys. Lett.92(4), 043303 (2008).
[CrossRef]

Demir, H. V.

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE International Conference on Neural Networks IV. pp. 1942–1948 (1995).
[CrossRef]

Erdem, T.

Gauza, S.

Hamilton, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Harbers, G.

Hardev, V.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” SID Symposium Digest of Technical Papers, 43, 895–896 (2012).
[CrossRef]

Hartlove, J.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” SID Symposium Digest of Technical Papers, 43, 895–896 (2012).
[CrossRef]

He, G. X.

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-depenent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–128 (1971).
[CrossRef]

Hirosaki, N.

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express2, 022401 (2009).
[CrossRef]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Hofler, J.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” SID Symposium Digest of Technical Papers, 43, 895–896 (2012).
[CrossRef]

Hong, H.

Hong, Q.

Hsieh, H. S.

Hsieh, P. J.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Hutchinson, K.

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

Im, S. H.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale5(12), 5205–5214 (2013).
[CrossRef] [PubMed]

Jang, E.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Jang, H.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Jun, S.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kataoka, S.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Kazlas, P. T.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE International Conference on Neural Networks IV. pp. 1942–1948 (1995).
[CrossRef]

Kikuchi, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kim, B.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Kim, B. K.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
[CrossRef]

Kim, S.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale5(12), 5205–5214 (2013).
[CrossRef] [PubMed]

Kim, S. H.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
[CrossRef]

Kim, S. W.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale5(12), 5205–5214 (2013).
[CrossRef] [PubMed]

Kim, Y.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Koike, Y.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Krames, M. R.

Kwak, J.

Lee, C.

Lee, E.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” SID Symposium Digest of Technical Papers, 43, 895–896 (2012).
[CrossRef]

Lee, J. H.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
[CrossRef]

Lee, S.

Liang, X.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Lim, J.

J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, “Perspective on synthesis, device structures, and printing processes for quantum dot displays,” Opt. Mater. Express2(5), 594–628 (2012).
[CrossRef]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Liu, S. H.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Liu, W.

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol.2(2), R3026–R3030 (2013).
[CrossRef]

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

Lu, R.

Mashford, B. S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Nizamoglu, S.

Ohmuro, K.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Okamoto, K.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Park, K. H.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
[CrossRef]

Peng, K. H.

Popovic, Z.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Reyes-Sierra, M.

M. Reyes-Sierra and C. A. C. Coello, “Multi-Objective particle swarm optimizers: a survey of the state-of-the-art,” Int. J. Comput. Intell. Res.2, 287–308 (2006).

Ritter, J.

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

Sasabayashi, T.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Sasaki, T.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Schadt, M.

M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48(3), 03B001 (2009).
[CrossRef]

M. Schadt and W. Helfrich, “Voltage-depenent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–128 (1971).
[CrossRef]

Shin, H.

Shirasaki, Y.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics7(1), 13–23 (2013).
[CrossRef]

Shiu, J. W.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Steckel, J.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Steckel, J. S.

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol.2(2), R3026–R3030 (2013).
[CrossRef]

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

Stevenson, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Sun, J.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Sun, X. W.

Supran, G. J.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics7(1), 13–23 (2013).
[CrossRef]

Takeda, A.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Takeda, T.

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express2, 022401 (2009).
[CrossRef]

Tsuda, H.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

Ukai, Y.

Y. Ukai, “TFT-LCDs as the future leading role in FPD,” SID Symposium Digest of Technical Papers, 44, 28–31 (2013).
[CrossRef]

Wu, S. T.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond graylevel response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol.6(2), 49–51 (2010).
[CrossRef]

R. Lu, S. Gauza, and S. T. Wu, “LED-lit LCD TVs,” Mol. Cryst. Liq. Cryst.488(1), 246–259 (2008).
[CrossRef]

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Display Technol.2(4), 319–326 (2006).
[CrossRef]

Xianyu, H.

Xie, R. J.

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express2, 022401 (2009).
[CrossRef]

Yan, J.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Yin, Y. S.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
[CrossRef]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Zhang, M. H.

Zhong, P.

Zhou, Z. Q.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

Adv. Mater. (1)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater.22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express2, 022401 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011).
[CrossRef]

M. Schadt and W. Helfrich, “Voltage-depenent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–128 (1971).
[CrossRef]

I. H. Campbell and B. K. Crone, “Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots,” Appl. Phys. Lett.92(4), 043303 (2008).
[CrossRef]

ECS J. Solid State Sci. Technol. (1)

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol.2(2), R3026–R3030 (2013).
[CrossRef]

Int. J. Comput. Intell. Res. (1)

M. Reyes-Sierra and C. A. C. Coello, “Multi-Objective particle swarm optimizers: a survey of the state-of-the-art,” Int. J. Comput. Intell. Res.2, 287–308 (2006).

J. Display Technol. (4)

J. Soc. Inf. Disp. (1)

M. Anandan, “Progress of LED backlights for LCDs,” J. Soc. Inf. Disp.16(2), 287–310 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48(3), 03B001 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

R. Lu, S. Gauza, and S. T. Wu, “LED-lit LCD TVs,” Mol. Cryst. Liq. Cryst.488(1), 246–259 (2008).
[CrossRef]

Nanoscale (1)

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale5(12), 5205–5214 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Nat. Photonics (3)

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7(5), 407–412 (2013).
[CrossRef]

S. Coe-Sullivan, “Quantum dot developments,” Nat. Photonics3(6), 315–316 (2009).
[CrossRef]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics7(1), 13–23 (2013).
[CrossRef]

Opt. Express (2)

Opt. Mater. Express (1)

Other (13)

S. Kobayashi, S. Mikoshiba, and S. Lim, LCD Backlights (Wiley, 2009).

D. Barnes, “LCD or OLED, who wins?” SID Symposium Digest of Technical Papers, 44, 26–27 (2013).
[CrossRef]

Y. Ukai, “TFT-LCDs as the future leading role in FPD,” SID Symposium Digest of Technical Papers, 44, 28–31 (2013).
[CrossRef]

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. S. Yin, “AH-IPS, superb display for mobile device,” SID Symposium Digest of Technical Papers, 44, 32–33 (2013).
[CrossRef]

J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, and S. Coe-Sullivan, “Quantum dot manufacturing requirements for the high volume LCD market,” SID Symposium Digest of Technical Papers, 44, 943–945 (2013).
[CrossRef]

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” SID Symposium Digest of Technical Papers, 43, 895–896 (2012).
[CrossRef]

http://hexus.net/tech/news/displays/50621-sonys-triluminos-displays-use-quantum-dot-technology /.

J. H. Lee, D. N. Liu, and S. T. Wu, Introduction to Flat Panel Displays (Wiley, 2008).

J. Morovič, Color Gamut Mapping (Wiley, 2008).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symposium Digest of Technical Papers, 29, 1077–1080 (1998).
[CrossRef]

C. A. C. Coello and G. B. Lamont, Applications of Multi-Objective Evolutionary Algorithms (World Scientificc, 2004).

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE International Conference on Neural Networks IV. pp. 1942–1948 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Light flow chart in a typical LCD system.

Fig. 2
Fig. 2

Normalized emission spectra of four light sources (black curves) and color filters (RGB curves).

Fig. 3
Fig. 3

Transmission spectrum of two open polarizers.

Fig. 4
Fig. 4

Simulated VT curves of (a).TN, (b). multi-domain IPS, and (c) MVA cells at R = 650 nm, G = 550 nm and B = 450 nm, and (d). simulated transmission spectra of these three LC modes at the specified voltages.

Fig. 5
Fig. 5

RGB primaries of different light sources and the NTSC standard primaries in (a) CIE 1931 and (b) CIE 1976. LC mode: TN.

Fig. 6
Fig. 6

Schematic diagram of a LCD system with QDEF backlight. The wide-view compensation films are not shown.

Fig. 7
Fig. 7

(a) Measured absorption spectrum of the green and red QDs, and (b) Normalized emission spectrum of green and red QDs when pumped by a blue InGaN LED whose emission peak wavelength is λ = 459 nm.

Fig. 8
Fig. 8

Relationship between TER and color gamut defined in (a) CIE 1931, and (b) CIE 1976 color space. LC cell: TN mode.

Fig. 9
Fig. 9

(a) Transmission spectra of color filters and emission spectra of QD1 and QD5; (b) Simulated color gamut of QD 1 and QD 5 in CIE 1931.

Fig. 10
Fig. 10

(a) Transmission spectra of color filters and emission spectrum of QD6, (b) Color primaries of QD6 as well as NTSC standard in CIE 1931 color space, and (c) Color primaries of QD 6 and NTSC standard in CIE 1976 color space

Fig. 11
Fig. 11

Relationship between of TER and color gamut for (a) IPS and (b) MVA LCDs.

Fig. 12
Fig. 12

Simulated Pareto front of QD backlight for a TN LCD when the FWHM of green and red emission peak has lower limit of 30 nm, 40 nm and 50 nm.

Tables (2)

Tables Icon

Table 1 Performance of a TN LCD with different light sources.

Tables Icon

Table 2 Optimal QD spectrum solutions and their spectral parameters and performance.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P out (λ)= P out,R (λ)+ P out,G (λ)+ P out,B (λ) = P in (λ)P(λ)R(λ)LC( V 1 ,λ) A R + P in (λ)P(λ)G(λ)LC( V 1 ,λ) A G + P in (λ)P(λ)B(λ)LC( V 1 ,λ) A B ,
LER= 683 lm W opt P out (λ)V(λ) dλ P out (λ) dλ .
TE= P out (λ) dλ P in (λ) dλ .
TLE= 683 lm W opt P out (λ)V(λ) dλ P in (λ) dλ =LER*TE.
X=k S(λ) x ¯ (λ)dλ, Y=k S(λ) y ¯ (λ)dλ, Z=k S(λ) z ¯ (λ)dλ,
x= X X+Y+Z , y= Y X+Y+Z , z= Z X+Y+Z ,
u'= 4X X+15Y+3Z , v'= 9Y X+15Y+3Z .
( x w y w z w )= F r ( x r y r z r )+ F g ( x g y g z g )+ F b ( x b y b z b ) z i =1 x i y i f i = F i F r + F g + F b } i=r,g,b .
f(λ)=Aexp[ (λ λ c ) 2 /8n(2) (Δλ) 2 ],
P in (λ)= f b S(λ, λ b ,Δ λ b )+ f g S(λ, λ g ,Δ λ g )+ f r S(λ, λ r ,Δ λ r ).
Color gamut= F 1 ( λ b ,Δ λ b , λ g ,Δ λ g , λ r ,Δ λ r ), TER= F 2 ( λ b ,Δ λ b , λ g ,Δ λ g , λ r ,Δ λ r ).

Metrics