Abstract

In recent years, the diffusion of mobile terminals has brought about an explosive increase in communication traffic of mobile RANs. The number of radio base stations and optical fiber lines between them is becoming larger. For this reason, we studied effective optical network technologies for mobile RANs and propose the use of TWDM-PON as a means of enabling RANs to be operated flexibly and have wideband communication capability. We confirmed the feasibility of TWDM-PON for this application by numerical simulation. The results show that TWDM-PON can accommodate the bandwidth more than TDM-PON and completely eliminate unused bandwidth in TDM-PON.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. 3GPP RAN Workshop on Release12, June 2012, http://www.3gpp.org/Future-Radio-in-3GPP-300-attend .
  2. K. Etemad and M. Baker, “Evolution of 3GPP LTE in release 11 and beyond,” IEEE Commun. Mag.51(2), 73 (2013).
    [CrossRef]
  3. C. Choi, Q. Wei, T. Biermann, and L. Scalia, “Mobile WDM Backhaul Access Networks with Physical Inter–Base-Station Links for Coordinated Multipoint Transmission/Reception Systems,” in Proceedings of GLOBECOM. 2011, pp.1–5.
  4. IEEE 802.3ah, http://www.ieee802.org/3/ah .
  5. S. Narikawa, H. Sanjoh, N. Sakurai, K. Kumozaki, and T. Imai, “Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver,” in Proceeding of ECOC. 2005, pp. 449–450.
    [CrossRef]
  6. ITU-T SG15 standard G.989.1 (general requirement) and G.989.2 (PMD specifications).
  7. D. Iida, S. Kuwano, J. Kani, and J. Terada, “A proposal of dynamic TWDM-PON for mobile radio access network,” APMP2013, TuA-3.
  8. S. Kimura, “WDM/TDM-PON technologies for future flexible optical access networks,” in Proceedings of OECC. 23GPP010, pp.14–15.
  9. J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
    [CrossRef]
  10. J. Kani, “Power saving techniques and mechanisms for optical access networks systems,” J. Lightwave Technol.31(4), 563–570 (2013).
    [CrossRef]
  11. 3GPP TS 36.300 v.11.3.0, Sep. 2012.
  12. 3GPP TS 36.420 v10.2.0, Sep. 2011.
  13. CPRI, http://www.cpri.info/spec.html .
  14. N. Shibata, S. Kuwano, J. Terada, and N. Yoshimoto, “Data bandwidth reduction based on wireless resource allocation for digitized radio over TDM-PON system,” OFC2013, OTh4A.6.
    [CrossRef]
  15. G. Yazawa, T. Tashiro, S. Kuwano, J. Terada, and N. Yoshimoto, “Low-latency transmission technique for mobile fronthaul based on TDM-PON,” IEICE Society Conf. 2013, B-8–38 (in Japanese).

2013 (2)

K. Etemad and M. Baker, “Evolution of 3GPP LTE in release 11 and beyond,” IEEE Commun. Mag.51(2), 73 (2013).
[CrossRef]

J. Kani, “Power saving techniques and mechanisms for optical access networks systems,” J. Lightwave Technol.31(4), 563–570 (2013).
[CrossRef]

2010 (1)

J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
[CrossRef]

Baker, M.

K. Etemad and M. Baker, “Evolution of 3GPP LTE in release 11 and beyond,” IEEE Commun. Mag.51(2), 73 (2013).
[CrossRef]

Biermann, T.

C. Choi, Q. Wei, T. Biermann, and L. Scalia, “Mobile WDM Backhaul Access Networks with Physical Inter–Base-Station Links for Coordinated Multipoint Transmission/Reception Systems,” in Proceedings of GLOBECOM. 2011, pp.1–5.

Choi, C.

C. Choi, Q. Wei, T. Biermann, and L. Scalia, “Mobile WDM Backhaul Access Networks with Physical Inter–Base-Station Links for Coordinated Multipoint Transmission/Reception Systems,” in Proceedings of GLOBECOM. 2011, pp.1–5.

Etemad, K.

K. Etemad and M. Baker, “Evolution of 3GPP LTE in release 11 and beyond,” IEEE Commun. Mag.51(2), 73 (2013).
[CrossRef]

Imai, T.

S. Narikawa, H. Sanjoh, N. Sakurai, K. Kumozaki, and T. Imai, “Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver,” in Proceeding of ECOC. 2005, pp. 449–450.
[CrossRef]

Kani, J.

J. Kani, “Power saving techniques and mechanisms for optical access networks systems,” J. Lightwave Technol.31(4), 563–570 (2013).
[CrossRef]

J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
[CrossRef]

Kumozaki, K.

S. Narikawa, H. Sanjoh, N. Sakurai, K. Kumozaki, and T. Imai, “Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver,” in Proceeding of ECOC. 2005, pp. 449–450.
[CrossRef]

Narikawa, S.

S. Narikawa, H. Sanjoh, N. Sakurai, K. Kumozaki, and T. Imai, “Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver,” in Proceeding of ECOC. 2005, pp. 449–450.
[CrossRef]

Sakurai, N.

S. Narikawa, H. Sanjoh, N. Sakurai, K. Kumozaki, and T. Imai, “Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver,” in Proceeding of ECOC. 2005, pp. 449–450.
[CrossRef]

Sanjoh, H.

S. Narikawa, H. Sanjoh, N. Sakurai, K. Kumozaki, and T. Imai, “Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver,” in Proceeding of ECOC. 2005, pp. 449–450.
[CrossRef]

Scalia, L.

C. Choi, Q. Wei, T. Biermann, and L. Scalia, “Mobile WDM Backhaul Access Networks with Physical Inter–Base-Station Links for Coordinated Multipoint Transmission/Reception Systems,” in Proceedings of GLOBECOM. 2011, pp.1–5.

Wei, Q.

C. Choi, Q. Wei, T. Biermann, and L. Scalia, “Mobile WDM Backhaul Access Networks with Physical Inter–Base-Station Links for Coordinated Multipoint Transmission/Reception Systems,” in Proceedings of GLOBECOM. 2011, pp.1–5.

IEEE Commun. Mag. (1)

K. Etemad and M. Baker, “Evolution of 3GPP LTE in release 11 and beyond,” IEEE Commun. Mag.51(2), 73 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Other (12)

3GPP TS 36.300 v.11.3.0, Sep. 2012.

3GPP TS 36.420 v10.2.0, Sep. 2011.

CPRI, http://www.cpri.info/spec.html .

N. Shibata, S. Kuwano, J. Terada, and N. Yoshimoto, “Data bandwidth reduction based on wireless resource allocation for digitized radio over TDM-PON system,” OFC2013, OTh4A.6.
[CrossRef]

G. Yazawa, T. Tashiro, S. Kuwano, J. Terada, and N. Yoshimoto, “Low-latency transmission technique for mobile fronthaul based on TDM-PON,” IEICE Society Conf. 2013, B-8–38 (in Japanese).

C. Choi, Q. Wei, T. Biermann, and L. Scalia, “Mobile WDM Backhaul Access Networks with Physical Inter–Base-Station Links for Coordinated Multipoint Transmission/Reception Systems,” in Proceedings of GLOBECOM. 2011, pp.1–5.

IEEE 802.3ah, http://www.ieee802.org/3/ah .

S. Narikawa, H. Sanjoh, N. Sakurai, K. Kumozaki, and T. Imai, “Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver,” in Proceeding of ECOC. 2005, pp. 449–450.
[CrossRef]

ITU-T SG15 standard G.989.1 (general requirement) and G.989.2 (PMD specifications).

D. Iida, S. Kuwano, J. Kani, and J. Terada, “A proposal of dynamic TWDM-PON for mobile radio access network,” APMP2013, TuA-3.

S. Kimura, “WDM/TDM-PON technologies for future flexible optical access networks,” in Proceedings of OECC. 23GPP010, pp.14–15.

3GPP RAN Workshop on Release12, June 2012, http://www.3gpp.org/Future-Radio-in-3GPP-300-attend .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

RAN configuration enabled by use of dynamic TWDM-PON.

Fig. 2
Fig. 2

Structures of the LCs in the OLT and the ONUs.

Fig. 3
Fig. 3

Relation between wavelengths and time in virtual PONs.

Fig. 4
Fig. 4

Network situation scenarios.

Fig. 5
Fig. 5

Bandwidth demand vs. supply rate for a fixed PON and a virtual PON.

Fig. 6
Fig. 6

Random fluctuation of mobile terminal number in three areas

Fig. 7
Fig. 7

Distribution of mobile terminal number in three areas.

Fig. 8
Fig. 8

Bandwidth used by one mobile terminal in three areas

Fig. 9
Fig. 9

Unused bandwidth in a fixed PON and a virtual PON.

Tables (2)

Tables Icon

Table 1 Network parameters in numerical simulations.

Tables Icon

Table 2 Number of users at the rate decrease point for several increasing ratios x.

Metrics