Abstract

In this demonstration, we first demonstrate a real-time phosphor-LED visible light communication (VLC) system with 37 Mbit/s total throughput under a 1.5 m free space transmission length. The transmitter and receiver modules are compact size. Utilizing our proposed pre-equalization technology, the ~1 MHz bandwidth of phosphor LED could be extended to ~12 MHz without using blue filter. Thus, the increase in bandwidth would enhance the traffic data rate for VLC transmission. The maximum bit-rate achieved by the VLC system is 37 Mbit/s, and a video transmission at 28.419 Mbit/s is demonstrated using the proposed VLC system. In addition, the relationships of received power and signal performance are discussed and analyzed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Lourenco, D. Terra, N. Kumar, L. N. Alves, and R. L. Aguiar, “Outdoor environment LED-identification systems integrate STBC-OFDM,” International Conference on ICT Convergence (ICTC), 2011, pp. 166–177.
  2. H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron.55(3), 1127–1134 (2009).
    [CrossRef]
  3. C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron.45(8), 901–905 (2013).
    [CrossRef]
  4. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
    [CrossRef]
  5. Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express20(21), 23019–23024 (2012).
    [CrossRef] [PubMed]
  6. H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
    [CrossRef]
  7. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
    [CrossRef]
  8. J. Vucic, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol.28(24), 3512–3518 (2010).
  9. C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
    [CrossRef]
  10. H. Le Minh, Z. Ghassemlooy, A. Burton, and P. A. Haigh, “Equalization for organic light emitting diodes in visible light communications,” IEEE GLOBECOM Workshops, 2011, pp. 828–832.
  11. A. H. Azhar, T. Tran, and D. O'Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett.25(2), 171–174 (2013).
    [CrossRef]
  12. C. H. Yeh, C. W. Chow, S. P. Huang, J. Y. Sung, Y. L. Liu, and C. L. Pan, “Ring-based WDM access network providing both Rayleigh backscattering noise mitigation and fiber-fault protection,” J. Lightwave Technol.30(20), 3211–3218 (2012).
    [CrossRef]
  13. J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K.-D. Langer, “Implementation of a real-time DMT-based 100 Mbit/s visible-light link,” Proc. of ECOC, 2012, Paper We.7.B.1.
  14. Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time audio & video transmission system based on visible light communication,” Opt. Photon. J.3(02), 153–157 (2013).
    [CrossRef]
  15. R. M. Hagem, S. G. O’Keefe, T. Fickenscher, and D. V. Thiel, “Self contained adaptable optical wireless communications system for stroke rate during swimming,” IEEE Sens. J.13(8), 3144–3151 (2013).
    [CrossRef]
  16. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
    [CrossRef]
  17. C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J.5(2), 7900709 (2013).
    [CrossRef]
  18. C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photon. J.5(1), 7900307 (2013).
    [CrossRef]

2013 (6)

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron.45(8), 901–905 (2013).
[CrossRef]

A. H. Azhar, T. Tran, and D. O'Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett.25(2), 171–174 (2013).
[CrossRef]

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time audio & video transmission system based on visible light communication,” Opt. Photon. J.3(02), 153–157 (2013).
[CrossRef]

R. M. Hagem, S. G. O’Keefe, T. Fickenscher, and D. V. Thiel, “Self contained adaptable optical wireless communications system for stroke rate during swimming,” IEEE Sens. J.13(8), 3144–3151 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J.5(2), 7900709 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photon. J.5(1), 7900307 (2013).
[CrossRef]

2012 (3)

2011 (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

2010 (1)

2009 (2)

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron.55(3), 1127–1134 (2009).
[CrossRef]

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

2008 (1)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

Azhar, A. H.

A. H. Azhar, T. Tran, and D. O'Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett.25(2), 171–174 (2013).
[CrossRef]

Chow, C. W.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J.5(2), 7900709 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photon. J.5(1), 7900307 (2013).
[CrossRef]

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron.45(8), 901–905 (2013).
[CrossRef]

Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express20(21), 23019–23024 (2012).
[CrossRef] [PubMed]

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
[CrossRef]

C. H. Yeh, C. W. Chow, S. P. Huang, J. Y. Sung, Y. L. Liu, and C. L. Pan, “Ring-based WDM access network providing both Rayleigh backscattering noise mitigation and fiber-fault protection,” J. Lightwave Technol.30(20), 3211–3218 (2012).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

Ding, L.

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time audio & video transmission system based on visible light communication,” Opt. Photon. J.3(02), 153–157 (2013).
[CrossRef]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron.55(3), 1127–1134 (2009).
[CrossRef]

Faulkner, G.

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Fickenscher, T.

R. M. Hagem, S. G. O’Keefe, T. Fickenscher, and D. V. Thiel, “Self contained adaptable optical wireless communications system for stroke rate during swimming,” IEEE Sens. J.13(8), 3144–3151 (2013).
[CrossRef]

Gong, Y.

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time audio & video transmission system based on visible light communication,” Opt. Photon. J.3(02), 153–157 (2013).
[CrossRef]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron.55(3), 1127–1134 (2009).
[CrossRef]

Hagem, R. M.

R. M. Hagem, S. G. O’Keefe, T. Fickenscher, and D. V. Thiel, “Self contained adaptable optical wireless communications system for stroke rate during swimming,” IEEE Sens. J.13(8), 3144–3151 (2013).
[CrossRef]

He, Y.

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time audio & video transmission system based on visible light communication,” Opt. Photon. J.3(02), 153–157 (2013).
[CrossRef]

Huang, P. Y.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J.5(2), 7900709 (2013).
[CrossRef]

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron.45(8), 901–905 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photon. J.5(1), 7900307 (2013).
[CrossRef]

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
[CrossRef]

Huang, S. P.

Jung, D.

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

Kottke, C.

Langer, K.-D.

Le Minh, H.

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Lee, K.

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Liu, Y.

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J.5(2), 7900709 (2013).
[CrossRef]

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron.45(8), 901–905 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photon. J.5(1), 7900307 (2013).
[CrossRef]

Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express20(21), 23019–23024 (2012).
[CrossRef] [PubMed]

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

Liu, Y. L.

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron.55(3), 1127–1134 (2009).
[CrossRef]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

Nerreter, S.

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

O’Keefe, S. G.

R. M. Hagem, S. G. O’Keefe, T. Fickenscher, and D. V. Thiel, “Self contained adaptable optical wireless communications system for stroke rate during swimming,” IEEE Sens. J.13(8), 3144–3151 (2013).
[CrossRef]

O'Brien, D.

A. H. Azhar, T. Tran, and D. O'Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett.25(2), 171–174 (2013).
[CrossRef]

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

Oh, Y.

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Pan, C. L.

Sung, J. Y.

Thiel, D. V.

R. M. Hagem, S. G. O’Keefe, T. Fickenscher, and D. V. Thiel, “Self contained adaptable optical wireless communications system for stroke rate during swimming,” IEEE Sens. J.13(8), 3144–3151 (2013).
[CrossRef]

Tran, T.

A. H. Azhar, T. Tran, and D. O'Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett.25(2), 171–174 (2013).
[CrossRef]

Tsang, H. K.

Vucic, J.

Walewski, J. W.

Wang, Y.

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time audio & video transmission system based on visible light communication,” Opt. Photon. J.3(02), 153–157 (2013).
[CrossRef]

Won, E. T.

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

Yeh, C. H.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron.45(8), 901–905 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J.5(2), 7900709 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photon. J.5(1), 7900307 (2013).
[CrossRef]

C. H. Yeh, C. W. Chow, S. P. Huang, J. Y. Sung, Y. L. Liu, and C. L. Pan, “Ring-based WDM access network providing both Rayleigh backscattering noise mitigation and fiber-fault protection,” J. Lightwave Technol.30(20), 3211–3218 (2012).
[CrossRef]

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
[CrossRef]

Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express20(21), 23019–23024 (2012).
[CrossRef] [PubMed]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

Zeng, L.

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Electron. Lett. (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

IEEE Photon. J. (2)

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J.5(2), 7900709 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photon. J.5(1), 7900307 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. H. Azhar, T. Tran, and D. O'Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett.25(2), 171–174 (2013).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009).
[CrossRef]

IEEE Sens. J. (1)

R. M. Hagem, S. G. O’Keefe, T. Fickenscher, and D. V. Thiel, “Self contained adaptable optical wireless communications system for stroke rate during swimming,” IEEE Sens. J.13(8), 3144–3151 (2013).
[CrossRef]

IEEE Trans. Consum. Electron. (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron.55(3), 1127–1134 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Photon. J. (1)

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time audio & video transmission system based on visible light communication,” Opt. Photon. J.3(02), 153–157 (2013).
[CrossRef]

Opt. Quantum Electron. (1)

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron.45(8), 901–905 (2013).
[CrossRef]

Other (3)

N. Lourenco, D. Terra, N. Kumar, L. N. Alves, and R. L. Aguiar, “Outdoor environment LED-identification systems integrate STBC-OFDM,” International Conference on ICT Convergence (ICTC), 2011, pp. 166–177.

J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K.-D. Langer, “Implementation of a real-time DMT-based 100 Mbit/s visible-light link,” Proc. of ECOC, 2012, Paper We.7.B.1.

H. Le Minh, Z. Ghassemlooy, A. Burton, and P. A. Haigh, “Equalization for organic light emitting diodes in visible light communications,” IEEE GLOBECOM Workshops, 2011, pp. 828–832.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed bidirectional phosphor-LED-based VLC system and the design of the LED lighting and client side modules.

Fig. 2
Fig. 2

(a) RLC circuit design for pre-equalization in lighting side. (b) The AGC design in Rx side for enhancing signal sensitivity. R: resistance; C: capacitance; L: inductance; A: amplifier; TIA: trans-impedance amplifier.

Fig. 3
Fig. 3

The VLC vertical transmission length is setup at 1.5 m long in central point, and the client side can move outward from the central point under the horizontal positions.

Fig. 4
Fig. 4

(a) Effective bandwidth of phosphor-LED is without pre-equalization. The 3 dB bandwidth of phosphor-LED is with pre-equalization under the received power of (b) 1100, (c) 900, (d) 700, (e) 500 and (f) 300 Lux, respectively.

Fig. 5
Fig. 5

Observed throughput of proposed LED VLC system under the different received illuminances from 100 to 2100 Lux.

Fig. 6
Fig. 6

Observed throughput of proposed LED VLC system under the different received illuminances from 100 to 2100 Lux.

Metrics