Abstract

This paper reports on a high-power dual-crystal Yb:CALGO laser head with greatly reduced sensitivity to thermal lensing in the gain medium. In continuous-wave operation 23 W of power were extracted from 2% doped crystals, and tunablity between 1018 nm and 1060 nm was demonstrated. This is the highest output power reported from a bulk Yb:CALGO laser to date, as well as the demonstration of the broadest tuning range. 4 mJ pulses at 1040 nm were achieved in cavity-dumped operation with quasi-CW pumping at 1 kHz repetition rate with nearly diffraction-limited beam quality. When seeded at 1030 nm with stretched femtosecond pulses, 3 mJ were achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).
  2. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett.32(14), 1962–1964 (2007).
    [PubMed]
  3. A. Greborio, A. Guandalini, and J. Aus der Au, “Sub-100fs pulses with 12.5W from Yb:CALGO based oscillators,” in Proc. SPIE 8235, Solid State Lasers XXI: Technology and Devices, 823511 (2012)
  4. D. N. Papadopoulos, F. Druon, J. Boudeile, I. Martial, M. Hanna, P. Georges, P. O. Petit, P. Goldner, and B. Viana, “Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser,” Opt. Lett.34(2), 196–198 (2009).
    [PubMed]
  5. A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, and A. Guandalini, “40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode,” Opt. Express20(9), 10077–10082 (2012).
    [PubMed]
  6. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
    [PubMed]
  7. A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, A. Guandalini, and J. Aus der Au, “Diode-pumped passively mode-locked tunable Yb:CALGO solid-state laser,” J. Opt. Soc. Am. B30(6), 1513–1516 (2013).
  8. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
    [PubMed]
  9. S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 Thin-Disk Laser,” Opt. Lett.36(21), 4134–4136 (2011).
    [PubMed]
  10. K. Beil, B. Deppe, and C. Kränkel, “Yb:CaGdAlO4 Thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range,” Opt. Lett.38(11), 1966–1968 (2013).
    [PubMed]
  11. F. Jaffres, S. Ricaud, A. Suganuma, B. Viana, P. Loiseau, P. Georges, and F. Druon, “Thermal conductivity versus Yb3+ concentration in Yb:CALGO: a material for high power ultrafast laser,” in Proc. SPIE 8621, Optical Components and Materials X, 86211S (March 11, 2013); doi:
    [CrossRef]
  12. A.-L. Calendron, K. S. Wentsch, and M. J. Lederer, “High power cw and mode-locked oscillators based on Yb:KYW multi-crystal resonators,” Opt. Express16(23), 18838–18843 (2008).
    [PubMed]
  13. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A4(10), 1962–1969 (1987).
  14. K. Naganuma, G. Lenz, and E. P. Ippen, “Variable bandwidth birefringent filter for stable femtosecond lasers,” IEEE J. Quantum Electron.28(10), 2142–2150 (1992).
  15. C. Horvath, A. Braun, H. Liu, T. Juhasz, and G. Mourou, “Compact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplification laser system,” Opt. Lett.22(23), 1790–1792 (1997).
    [PubMed]
  16. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

2013

2012

2011

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 Thin-Disk Laser,” Opt. Lett.36(21), 4134–4136 (2011).
[PubMed]

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

2009

2008

2007

2006

1998

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

1997

1992

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable bandwidth birefringent filter for stable femtosecond lasers,” IEEE J. Quantum Electron.28(10), 2142–2150 (1992).

1987

Abdou-Ahmed, M.

Agnesi, A.

Aus der Au, J.

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

Balembois, F.

Beil, K.

Bhardwaj, S.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Birge, J. R.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Boudeile, J.

Braun, A.

Calendron, A.-L.

Cerullo, G.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Chen, L.-J.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Cirmi, G.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Cormier, E.

Delaigue, M.

Deppe, B.

Didierjean, J.

Druon, F.

Eggleton, B. J.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Georges, P.

Goldner, P.

Graf, T.

Greborio, A.

Guandalini, A.

Hanna, M.

Hong, K.-H.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Hönninger, C.

Horvath, C.

Huang, S.-W.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Ippen, E. P.

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable bandwidth birefringent filter for stable femtosecond lasers,” IEEE J. Quantum Electron.28(10), 2142–2150 (1992).

Jaffres, A.

Juhasz, T.

Kärtner, F. X.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Kränkel, C.

Lederer, M. J.

Lenz, G.

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable bandwidth birefringent filter for stable femtosecond lasers,” IEEE J. Quantum Electron.28(10), 2142–2150 (1992).

Li, E.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Liu, H.

Loiseau, P.

Lucas Leclin, G.

Magni, V.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

Martial, I.

Moses, J.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Mottay, E.

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

C. Horvath, A. Braun, H. Liu, T. Juhasz, and G. Mourou, “Compact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplification laser system,” Opt. Lett.22(23), 1790–1792 (1997).
[PubMed]

Naganuma, K.

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable bandwidth birefringent filter for stable femtosecond lasers,” IEEE J. Quantum Electron.28(10), 2142–2150 (1992).

Papadopoulos, D. N.

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

Petit, J.

Petit, P. O.

Pirzio, F.

Reali, G.

Ricaud, S.

Rytz, D.

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

Suganuma, A.

Ugolotti, E.

Viana, B.

Voss, A.

Weichelt, B.

Wentsch, K.

Wentsch, K. S.

Zaouter, Y.

IEEE J. Quantum Electron.

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable bandwidth birefringent filter for stable femtosecond lasers,” IEEE J. Quantum Electron.28(10), 2142–2150 (1992).

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1998).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature Phot.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Phot.5, 475–479 (2011).

Opt. Express

Opt. Lett.

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
[PubMed]

K. Beil, B. Deppe, and C. Kränkel, “Yb:CaGdAlO4 Thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range,” Opt. Lett.38(11), 1966–1968 (2013).
[PubMed]

D. N. Papadopoulos, F. Druon, J. Boudeile, I. Martial, M. Hanna, P. Georges, P. O. Petit, P. Goldner, and B. Viana, “Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser,” Opt. Lett.34(2), 196–198 (2009).
[PubMed]

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 Thin-Disk Laser,” Opt. Lett.36(21), 4134–4136 (2011).
[PubMed]

C. Horvath, A. Braun, H. Liu, T. Juhasz, and G. Mourou, “Compact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplification laser system,” Opt. Lett.22(23), 1790–1792 (1997).
[PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
[PubMed]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett.32(14), 1962–1964 (2007).
[PubMed]

Other

A. Greborio, A. Guandalini, and J. Aus der Au, “Sub-100fs pulses with 12.5W from Yb:CALGO based oscillators,” in Proc. SPIE 8235, Solid State Lasers XXI: Technology and Devices, 823511 (2012)

F. Jaffres, S. Ricaud, A. Suganuma, B. Viana, P. Loiseau, P. Georges, and F. Druon, “Thermal conductivity versus Yb3+ concentration in Yb:CALGO: a material for high power ultrafast laser,” in Proc. SPIE 8621, Optical Components and Materials X, 86211S (March 11, 2013); doi:
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Layout of the dual-crystal cavity. The abbreviations of the components are L for lenses, DC dichroic mirror, PBS polarization beam splitter, LD laser diode, λ/2 and λ/4 half- and quarter-waveplate, XTAL1 and XTAL2 both Yb:CALGO crystals, PC Pockels cell, TFP thin film polarizer and BRF birefringent filter. M1 to M6 are high reflectors, M1 and M2 curved mirrors with 500 mm radius of curvature, while M4 and M5 have 1000 mm radius of curvature, and OC1-2 are output couplers. S denotes the symmetry point of the short cavity, defined between OC1 and OC2. A high reflector was inserted at S to build the stable single-crystal resonator with OC1. OC2 was removed to operate the long cavity, from OC1 to M6. For cavity-dumped operation, OC1 was replaced by a high reflector and the switching elements were inserted.

Fig. 2
Fig. 2

Variation of output coupling at fixed beam quality parameter, M2 < 1.2.

Fig. 3
Fig. 3

Characterization of the CW-operation of the dual 1%-doped crystal cavity. (a) Power characterization of the laser head in CW regime, with the beam profile in the focus as inset, and (b) measured tuning curve. The measurement was taken with the 7.5% output coupler and the cavity aligned to ensure a beam quality better than 1.2 at the maximal output power of 23 W.

Fig. 4
Fig. 4

(a) Spectrum and beam profile at the waist as inset of the cavity dumped pulse; and (b) spectrum for seeded operation. Both cases are for 1 kHz repetition rate, and 118 W of total incident pump power.

Metrics