Abstract

The resonance enhanced Raman spectra in the 1B2u mode of the forbidden benzene electronic transition band, ~230-270 nm, has been investigated. Resonance enhanced Raman scattering in both liquid benzene and liquid toluene exhibit the greatest enhancement when the wavelength of excitation is tuned to the vapor-phase absorption peaks; even though the sample volume is in a liquid state. Raman signals for the symmetric breathing mode of the carbon ring are found to be resonantly enhanced by several orders of magnitude (>500X) with deep UV excitation compared to non-resonant visible excitation. Since the benzene absorbs near this resonant wavelength, its effect on the sampled volume cannot be neglected in determining the resonance gain, as we discuss in detail. Large resonant gains correspond with excitation at the 247, 253, and 259 nm absorption peaks in the benzene vapor spectrum. The narrow region of resonance gain is investigated in detail around the absorption peak located at 259 nm using 0.25 nm steps in the excitation wavelength. We observe the resonance gain tracking the vapor phase absorption peaks and valleys within this narrow range. Results are interpreted in terms of the coherence forced by the use of a forbidden transition for resonance excitation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Ziegler and B. Hudson, “Resonance Raman scattering of benzene and benzene-d6 with 212.8 nm excitation,” J. Chem. Phys.74(2), 982–992 (1981).
    [CrossRef]
  2. S. Asher and C. Johnson, “Resonance Raman excitation profile through the 1B2u state of benzene,” J. Phys. Chem.89(8), 1375–1379 (1985).
    [CrossRef]
  3. D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
    [CrossRef]
  4. R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
    [CrossRef]
  5. R. Sension, R. Brudzynski, and B. Hudson, “Vacuum ultraviolet resonance Raman studies of the valence electronic states of benzene and benzene-d6: The E1u state and a putative A2u state,” J. Chem. Phys.94(2), 873–882 (1991).
    [CrossRef]
  6. L. Ziegler and A. Albrecht, “Raman scattering of benzene in the ultraviolet,” J. Chem. Phys.67(6), 2753–2757 (1977).
    [CrossRef]
  7. G. Korenowski, L. Ziegler, and A. Albrecht, “Calculations of resonance Raman cross sections in forbidden electronic transitions: scattering of the 992 cm−1 mode in the 1B2u band of benzene,” J. Chem. Phys.68(3), 1248–1252 (1978).
    [CrossRef]
  8. A. Albrecht and M. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys.55(9), 4438–4443 (1971).
    [CrossRef]
  9. C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” Proc. 4th Lidar Atmos. Appl. 89th AMS, 2009 http://ams.confex.com/ams/pdfpapers/150051.pdf
  10. A. Sedlacek and C. Chen, “Exploitation of resonance Raman spectroscopy as a remote chemical sensor,” BNL-61359: Conf. 950787–35 (1995).
  11. A. Sedlacek and C. Chen, “Remote detection of trace effluents using resonance Raman spectroscopy,” BNL-49542: Conf. 9311173–2 (1995).
  12. C. Chen, D. Heglund, M. Ray, D. Harder, R. Dobert, K. Leung, M. Wu, and A. Sedlacek, “Application of resonance Raman lidar for chemical species identification,” BNL-64388: Conf.-970465–19 (1997).
  13. C. L. Jahncke, H. D. Hallen, and M. A. Paesler, “Nano-Raman spectroscopy and imaging with the near-field scanning optical microscope,” J. Raman Spectrosc.27(8), 579–586 (1996).
    [CrossRef]
  14. H. D. Hallen, “Nano-Raman spectroscopy: surface plasmon emission, field gradients, and fundamentally near field propagation effects,” NanoBiotechnology3(3), 197 (2009), doi:.
    [CrossRef]
  15. A. Willitsford, C. T. Chadwick, H. Hallen, and C. R. Philbrick, “Resonance Raman measurements utilizing a tunable deep UV source,” Proc. SPIE6950, 695010 (2008).
    [CrossRef]
  16. A. Willitsford, Resonance Raman Spectroscopy in the Ultraviolet using a Tunable Laser, Ph.D. Dissertation, Penn State University (2008) https://etda.libraries.psu.edu/paper/8149/ .
  17. C. T. Chadwick, Resonance Raman Spectroscopy Utilizing Tunable Deep Ultraviolet Excitation for Materials Characterization, Ph.D. Dissertation, N. C. State University (2009) http://www.lib.ncsu.edu/resolver/1840.16/5473 .
  18. S. Asher, C. Johnson, and J. Murtaugh, “Development of a new UV resonance Raman spectrometer for the 217-400 nm spectral region,” Rev. Sci. Instrum.54(12), 1657–1662 (1983).
    [CrossRef]
  19. S. Asher, Coal Liquefaction Process Streams Characterization and Evaluation UV Resonance Raman Studies of Coal Liquid Residuals. DOE/PC/89883–67 (DE93009669) DOE (1993).
  20. American Petroleum Institute Research Project 44, Selected Ultraviolet Spectral Data2 (1945–1984), Thermodynamics Research Center, Department of Chemical Engineering, Texas A & M University http://catalog.lib.ncsu.edu/record/NCSU623743 .
  21. J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81, 212–213 (2005) http://omlc.ogi.edu/spectra/PhotochemCAD/html/042.html (benzene) http://omlc.ogi.edu/spectra/PhotochemCAD/html/090.html (toluene).
    [CrossRef]
  22. T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
    [CrossRef]
  23. K. G. Spears and S. A. Rice, “Study of the lifetimes of individual vibronic states of the isolated benzene molecule,” J. Chem. Phys.55(12), 5561–5581 (1971).
    [CrossRef]
  24. J. H. Callomon, T. M. Dunn, and I. M. Mills, ““Rotational analysis of the 2600 Å absorption of benzene,” Philos. Trans. R. Soc. London, Ser. A259(1104), 499–532 (1966).
  25. E. B. Wilson, “The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule,” Phys. Rev.45(10), 706–714 (1934).
    [CrossRef]
  26. T. C. Strekas, D. H. Adams, A. Packer, and T. G. Spiro, “Absorption corrections and concentration optimization for absorbing samples in resonance Raman spectroscopy,” Appl. Spectrosc.28(4), 324–327 (1974).
    [CrossRef]
  27. H. Inaba, “Chapter 5: Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. Springer-Verlag, (1976).
  28. P. G. Harmon and S. A. Asher, “Environmental dependence of preresonance Raman crosssection dispersions: Benzene vaporphase excitation profiles,” J. Chem. Phys.93(5), 3094 (1990).
    [CrossRef]
  29. A. H. Willitsford, Johns Hopkins University - Applied Physics Lab, Laurel, MD 20709, and C. T. Chadwick, S. Kurtz, H. D. Hallen, C. R. Philbrick, are preparing a manuscript to be called “Resonance enhanced Raman scattering of the υ9 and υ10 b2u vibrational modes in the 1B2u absorption band.”
  30. D. R. Falcone, D. C. Douglass, and D. W. McCall, “Self-diffusion in benzene,” J. Phys. Chem.71(8), 2754–2755 (1967).
    [CrossRef]

2009 (1)

H. D. Hallen, “Nano-Raman spectroscopy: surface plasmon emission, field gradients, and fundamentally near field propagation effects,” NanoBiotechnology3(3), 197 (2009), doi:.
[CrossRef]

2008 (1)

A. Willitsford, C. T. Chadwick, H. Hallen, and C. R. Philbrick, “Resonance Raman measurements utilizing a tunable deep UV source,” Proc. SPIE6950, 695010 (2008).
[CrossRef]

1999 (1)

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

1996 (1)

C. L. Jahncke, H. D. Hallen, and M. A. Paesler, “Nano-Raman spectroscopy and imaging with the near-field scanning optical microscope,” J. Raman Spectrosc.27(8), 579–586 (1996).
[CrossRef]

1992 (1)

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

1991 (1)

R. Sension, R. Brudzynski, and B. Hudson, “Vacuum ultraviolet resonance Raman studies of the valence electronic states of benzene and benzene-d6: The E1u state and a putative A2u state,” J. Chem. Phys.94(2), 873–882 (1991).
[CrossRef]

1990 (1)

P. G. Harmon and S. A. Asher, “Environmental dependence of preresonance Raman crosssection dispersions: Benzene vaporphase excitation profiles,” J. Chem. Phys.93(5), 3094 (1990).
[CrossRef]

1985 (2)

S. Asher and C. Johnson, “Resonance Raman excitation profile through the 1B2u state of benzene,” J. Phys. Chem.89(8), 1375–1379 (1985).
[CrossRef]

D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
[CrossRef]

1983 (1)

S. Asher, C. Johnson, and J. Murtaugh, “Development of a new UV resonance Raman spectrometer for the 217-400 nm spectral region,” Rev. Sci. Instrum.54(12), 1657–1662 (1983).
[CrossRef]

1981 (1)

L. Ziegler and B. Hudson, “Resonance Raman scattering of benzene and benzene-d6 with 212.8 nm excitation,” J. Chem. Phys.74(2), 982–992 (1981).
[CrossRef]

1978 (1)

G. Korenowski, L. Ziegler, and A. Albrecht, “Calculations of resonance Raman cross sections in forbidden electronic transitions: scattering of the 992 cm−1 mode in the 1B2u band of benzene,” J. Chem. Phys.68(3), 1248–1252 (1978).
[CrossRef]

1977 (1)

L. Ziegler and A. Albrecht, “Raman scattering of benzene in the ultraviolet,” J. Chem. Phys.67(6), 2753–2757 (1977).
[CrossRef]

1974 (1)

1971 (2)

A. Albrecht and M. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys.55(9), 4438–4443 (1971).
[CrossRef]

K. G. Spears and S. A. Rice, “Study of the lifetimes of individual vibronic states of the isolated benzene molecule,” J. Chem. Phys.55(12), 5561–5581 (1971).
[CrossRef]

1967 (1)

D. R. Falcone, D. C. Douglass, and D. W. McCall, “Self-diffusion in benzene,” J. Phys. Chem.71(8), 2754–2755 (1967).
[CrossRef]

1966 (1)

J. H. Callomon, T. M. Dunn, and I. M. Mills, ““Rotational analysis of the 2600 Å absorption of benzene,” Philos. Trans. R. Soc. London, Ser. A259(1104), 499–532 (1966).

1934 (1)

E. B. Wilson, “The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule,” Phys. Rev.45(10), 706–714 (1934).
[CrossRef]

Adams, D. H.

Albrecht, A.

G. Korenowski, L. Ziegler, and A. Albrecht, “Calculations of resonance Raman cross sections in forbidden electronic transitions: scattering of the 992 cm−1 mode in the 1B2u band of benzene,” J. Chem. Phys.68(3), 1248–1252 (1978).
[CrossRef]

L. Ziegler and A. Albrecht, “Raman scattering of benzene in the ultraviolet,” J. Chem. Phys.67(6), 2753–2757 (1977).
[CrossRef]

A. Albrecht and M. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys.55(9), 4438–4443 (1971).
[CrossRef]

Asher, S.

S. Asher and C. Johnson, “Resonance Raman excitation profile through the 1B2u state of benzene,” J. Phys. Chem.89(8), 1375–1379 (1985).
[CrossRef]

S. Asher, C. Johnson, and J. Murtaugh, “Development of a new UV resonance Raman spectrometer for the 217-400 nm spectral region,” Rev. Sci. Instrum.54(12), 1657–1662 (1983).
[CrossRef]

Asher, S. A.

P. G. Harmon and S. A. Asher, “Environmental dependence of preresonance Raman crosssection dispersions: Benzene vaporphase excitation profiles,” J. Chem. Phys.93(5), 3094 (1990).
[CrossRef]

Barnes, I.

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

Becker, K. H.

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

Brudzynski, R.

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

R. Sension, R. Brudzynski, and B. Hudson, “Vacuum ultraviolet resonance Raman studies of the valence electronic states of benzene and benzene-d6: The E1u state and a putative A2u state,” J. Chem. Phys.94(2), 873–882 (1991).
[CrossRef]

Callomon, J. H.

J. H. Callomon, T. M. Dunn, and I. M. Mills, ““Rotational analysis of the 2600 Å absorption of benzene,” Philos. Trans. R. Soc. London, Ser. A259(1104), 499–532 (1966).

Chadwick, C. T.

A. Willitsford, C. T. Chadwick, H. Hallen, and C. R. Philbrick, “Resonance Raman measurements utilizing a tunable deep UV source,” Proc. SPIE6950, 695010 (2008).
[CrossRef]

Desiderio, R.

D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
[CrossRef]

Douglass, D. C.

D. R. Falcone, D. C. Douglass, and D. W. McCall, “Self-diffusion in benzene,” J. Phys. Chem.71(8), 2754–2755 (1967).
[CrossRef]

Dunn, T. M.

J. H. Callomon, T. M. Dunn, and I. M. Mills, ““Rotational analysis of the 2600 Å absorption of benzene,” Philos. Trans. R. Soc. London, Ser. A259(1104), 499–532 (1966).

Etzkorn, T.

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

Falcone, D. R.

D. R. Falcone, D. C. Douglass, and D. W. McCall, “Self-diffusion in benzene,” J. Phys. Chem.71(8), 2754–2755 (1967).
[CrossRef]

Gerrity, D.

D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
[CrossRef]

Hallen, H.

A. Willitsford, C. T. Chadwick, H. Hallen, and C. R. Philbrick, “Resonance Raman measurements utilizing a tunable deep UV source,” Proc. SPIE6950, 695010 (2008).
[CrossRef]

Hallen, H. D.

H. D. Hallen, “Nano-Raman spectroscopy: surface plasmon emission, field gradients, and fundamentally near field propagation effects,” NanoBiotechnology3(3), 197 (2009), doi:.
[CrossRef]

C. L. Jahncke, H. D. Hallen, and M. A. Paesler, “Nano-Raman spectroscopy and imaging with the near-field scanning optical microscope,” J. Raman Spectrosc.27(8), 579–586 (1996).
[CrossRef]

Harmon, P. G.

P. G. Harmon and S. A. Asher, “Environmental dependence of preresonance Raman crosssection dispersions: Benzene vaporphase excitation profiles,” J. Chem. Phys.93(5), 3094 (1990).
[CrossRef]

Hudson, B.

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

R. Sension, R. Brudzynski, and B. Hudson, “Vacuum ultraviolet resonance Raman studies of the valence electronic states of benzene and benzene-d6: The E1u state and a putative A2u state,” J. Chem. Phys.94(2), 873–882 (1991).
[CrossRef]

D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
[CrossRef]

L. Ziegler and B. Hudson, “Resonance Raman scattering of benzene and benzene-d6 with 212.8 nm excitation,” J. Chem. Phys.74(2), 982–992 (1981).
[CrossRef]

Hutley, M.

A. Albrecht and M. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys.55(9), 4438–4443 (1971).
[CrossRef]

Jahncke, C. L.

C. L. Jahncke, H. D. Hallen, and M. A. Paesler, “Nano-Raman spectroscopy and imaging with the near-field scanning optical microscope,” J. Raman Spectrosc.27(8), 579–586 (1996).
[CrossRef]

Johnson, C.

S. Asher and C. Johnson, “Resonance Raman excitation profile through the 1B2u state of benzene,” J. Phys. Chem.89(8), 1375–1379 (1985).
[CrossRef]

S. Asher, C. Johnson, and J. Murtaugh, “Development of a new UV resonance Raman spectrometer for the 217-400 nm spectral region,” Rev. Sci. Instrum.54(12), 1657–1662 (1983).
[CrossRef]

Kelly, P.

D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
[CrossRef]

Klotz, B.

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

Korenowski, G.

G. Korenowski, L. Ziegler, and A. Albrecht, “Calculations of resonance Raman cross sections in forbidden electronic transitions: scattering of the 992 cm−1 mode in the 1B2u band of benzene,” J. Chem. Phys.68(3), 1248–1252 (1978).
[CrossRef]

Li, S.

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

McCall, D. W.

D. R. Falcone, D. C. Douglass, and D. W. McCall, “Self-diffusion in benzene,” J. Phys. Chem.71(8), 2754–2755 (1967).
[CrossRef]

Mills, I. M.

J. H. Callomon, T. M. Dunn, and I. M. Mills, ““Rotational analysis of the 2600 Å absorption of benzene,” Philos. Trans. R. Soc. London, Ser. A259(1104), 499–532 (1966).

Murtaugh, J.

S. Asher, C. Johnson, and J. Murtaugh, “Development of a new UV resonance Raman spectrometer for the 217-400 nm spectral region,” Rev. Sci. Instrum.54(12), 1657–1662 (1983).
[CrossRef]

Packer, A.

Paesler, M. A.

C. L. Jahncke, H. D. Hallen, and M. A. Paesler, “Nano-Raman spectroscopy and imaging with the near-field scanning optical microscope,” J. Raman Spectrosc.27(8), 579–586 (1996).
[CrossRef]

Patroescu, I. V.

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

Philbrick, C. R.

A. Willitsford, C. T. Chadwick, H. Hallen, and C. R. Philbrick, “Resonance Raman measurements utilizing a tunable deep UV source,” Proc. SPIE6950, 695010 (2008).
[CrossRef]

Platt, U.

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

Rice, S. A.

K. G. Spears and S. A. Rice, “Study of the lifetimes of individual vibronic states of the isolated benzene molecule,” J. Chem. Phys.55(12), 5561–5581 (1971).
[CrossRef]

Sension, R.

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

R. Sension, R. Brudzynski, and B. Hudson, “Vacuum ultraviolet resonance Raman studies of the valence electronic states of benzene and benzene-d6: The E1u state and a putative A2u state,” J. Chem. Phys.94(2), 873–882 (1991).
[CrossRef]

Sørensen, S.

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

Spears, K. G.

K. G. Spears and S. A. Rice, “Study of the lifetimes of individual vibronic states of the isolated benzene molecule,” J. Chem. Phys.55(12), 5561–5581 (1971).
[CrossRef]

Spiro, T. G.

Strekas, T. C.

Willitsford, A.

A. Willitsford, C. T. Chadwick, H. Hallen, and C. R. Philbrick, “Resonance Raman measurements utilizing a tunable deep UV source,” Proc. SPIE6950, 695010 (2008).
[CrossRef]

Wilson, E. B.

E. B. Wilson, “The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule,” Phys. Rev.45(10), 706–714 (1934).
[CrossRef]

Zerbetto, F.

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

Zgierski, M. Z.

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

Ziegler, L.

D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
[CrossRef]

L. Ziegler and B. Hudson, “Resonance Raman scattering of benzene and benzene-d6 with 212.8 nm excitation,” J. Chem. Phys.74(2), 982–992 (1981).
[CrossRef]

G. Korenowski, L. Ziegler, and A. Albrecht, “Calculations of resonance Raman cross sections in forbidden electronic transitions: scattering of the 992 cm−1 mode in the 1B2u band of benzene,” J. Chem. Phys.68(3), 1248–1252 (1978).
[CrossRef]

L. Ziegler and A. Albrecht, “Raman scattering of benzene in the ultraviolet,” J. Chem. Phys.67(6), 2753–2757 (1977).
[CrossRef]

Appl. Spectrosc. (1)

Atmos. Environ. (1)

T. Etzkorn, B. Klotz, S. Sørensen, I. V. Patroescu, I. Barnes, K. H. Becker, and U. Platt, “Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges,” Atmos. Environ.33(4), 525–540 (1999) (MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules http://www.satellite.mpic.de/spectral_atlas.org).
[CrossRef]

J. Chem. Phys. (9)

K. G. Spears and S. A. Rice, “Study of the lifetimes of individual vibronic states of the isolated benzene molecule,” J. Chem. Phys.55(12), 5561–5581 (1971).
[CrossRef]

L. Ziegler and B. Hudson, “Resonance Raman scattering of benzene and benzene-d6 with 212.8 nm excitation,” J. Chem. Phys.74(2), 982–992 (1981).
[CrossRef]

P. G. Harmon and S. A. Asher, “Environmental dependence of preresonance Raman crosssection dispersions: Benzene vaporphase excitation profiles,” J. Chem. Phys.93(5), 3094 (1990).
[CrossRef]

D. Gerrity, L. Ziegler, P. Kelly, R. Desiderio, and B. Hudson, “Ultraviolet resonance Raman spectroscopy of benzene vapor with 220-184 nm excitation,” J. Chem. Phys.83(7), 3209–3213 (1985).
[CrossRef]

R. Sension, R. Brudzynski, S. Li, B. Hudson, F. Zerbetto, and M. Z. Zgierski, “Resonance Raman spectroscopy of the B1u region of benzene: analysis in terms of pseudo-Jahn-Teller Distortion,” J. Chem. Phys.96(4), 2617–2628 (1992).
[CrossRef]

R. Sension, R. Brudzynski, and B. Hudson, “Vacuum ultraviolet resonance Raman studies of the valence electronic states of benzene and benzene-d6: The E1u state and a putative A2u state,” J. Chem. Phys.94(2), 873–882 (1991).
[CrossRef]

L. Ziegler and A. Albrecht, “Raman scattering of benzene in the ultraviolet,” J. Chem. Phys.67(6), 2753–2757 (1977).
[CrossRef]

G. Korenowski, L. Ziegler, and A. Albrecht, “Calculations of resonance Raman cross sections in forbidden electronic transitions: scattering of the 992 cm−1 mode in the 1B2u band of benzene,” J. Chem. Phys.68(3), 1248–1252 (1978).
[CrossRef]

A. Albrecht and M. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys.55(9), 4438–4443 (1971).
[CrossRef]

J. Phys. Chem. (2)

S. Asher and C. Johnson, “Resonance Raman excitation profile through the 1B2u state of benzene,” J. Phys. Chem.89(8), 1375–1379 (1985).
[CrossRef]

D. R. Falcone, D. C. Douglass, and D. W. McCall, “Self-diffusion in benzene,” J. Phys. Chem.71(8), 2754–2755 (1967).
[CrossRef]

J. Raman Spectrosc. (1)

C. L. Jahncke, H. D. Hallen, and M. A. Paesler, “Nano-Raman spectroscopy and imaging with the near-field scanning optical microscope,” J. Raman Spectrosc.27(8), 579–586 (1996).
[CrossRef]

NanoBiotechnology (1)

H. D. Hallen, “Nano-Raman spectroscopy: surface plasmon emission, field gradients, and fundamentally near field propagation effects,” NanoBiotechnology3(3), 197 (2009), doi:.
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A (1)

J. H. Callomon, T. M. Dunn, and I. M. Mills, ““Rotational analysis of the 2600 Å absorption of benzene,” Philos. Trans. R. Soc. London, Ser. A259(1104), 499–532 (1966).

Phys. Rev. (1)

E. B. Wilson, “The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule,” Phys. Rev.45(10), 706–714 (1934).
[CrossRef]

Proc. SPIE (1)

A. Willitsford, C. T. Chadwick, H. Hallen, and C. R. Philbrick, “Resonance Raman measurements utilizing a tunable deep UV source,” Proc. SPIE6950, 695010 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Asher, C. Johnson, and J. Murtaugh, “Development of a new UV resonance Raman spectrometer for the 217-400 nm spectral region,” Rev. Sci. Instrum.54(12), 1657–1662 (1983).
[CrossRef]

Other (11)

S. Asher, Coal Liquefaction Process Streams Characterization and Evaluation UV Resonance Raman Studies of Coal Liquid Residuals. DOE/PC/89883–67 (DE93009669) DOE (1993).

American Petroleum Institute Research Project 44, Selected Ultraviolet Spectral Data2 (1945–1984), Thermodynamics Research Center, Department of Chemical Engineering, Texas A & M University http://catalog.lib.ncsu.edu/record/NCSU623743 .

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81, 212–213 (2005) http://omlc.ogi.edu/spectra/PhotochemCAD/html/042.html (benzene) http://omlc.ogi.edu/spectra/PhotochemCAD/html/090.html (toluene).
[CrossRef]

A. Willitsford, Resonance Raman Spectroscopy in the Ultraviolet using a Tunable Laser, Ph.D. Dissertation, Penn State University (2008) https://etda.libraries.psu.edu/paper/8149/ .

C. T. Chadwick, Resonance Raman Spectroscopy Utilizing Tunable Deep Ultraviolet Excitation for Materials Characterization, Ph.D. Dissertation, N. C. State University (2009) http://www.lib.ncsu.edu/resolver/1840.16/5473 .

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” Proc. 4th Lidar Atmos. Appl. 89th AMS, 2009 http://ams.confex.com/ams/pdfpapers/150051.pdf

A. Sedlacek and C. Chen, “Exploitation of resonance Raman spectroscopy as a remote chemical sensor,” BNL-61359: Conf. 950787–35 (1995).

A. Sedlacek and C. Chen, “Remote detection of trace effluents using resonance Raman spectroscopy,” BNL-49542: Conf. 9311173–2 (1995).

C. Chen, D. Heglund, M. Ray, D. Harder, R. Dobert, K. Leung, M. Wu, and A. Sedlacek, “Application of resonance Raman lidar for chemical species identification,” BNL-64388: Conf.-970465–19 (1997).

H. Inaba, “Chapter 5: Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. Springer-Verlag, (1976).

A. H. Willitsford, Johns Hopkins University - Applied Physics Lab, Laurel, MD 20709, and C. T. Chadwick, S. Kurtz, H. D. Hallen, C. R. Philbrick, are preparing a manuscript to be called “Resonance enhanced Raman scattering of the υ9 and υ10 b2u vibrational modes in the 1B2u absorption band.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical arrangement for the resonance Raman experiments.

Fig. 2
Fig. 2

Benzene liquid and vapor absorption spectra; (a) liquid spectra from API [20] and PhotoChemCad [21] are compared with benzene vapor absorption measured by Etzkorn [22] in the 1B2u band, (b) expanded plot showing locations of the laser excitation wavelengths used in Fig. 3.

Fig. 3
Fig. 3

Benzene resonance Raman spectra are plotted for several excitation wavelengths (each spectrum is offset) as the wavelength is stepped through a vapor absorption maximum.

Fig. 4
Fig. 4

Resonance Raman excitation profile for ν2 () and ν10 () vibrational modes of benzene (right vertical axis). The absorption of benzene in the vapor () and liquid () phase are shown (left vertical axis). The experimental data clearly follow vapor absorption rather than that of the liquid.

Fig. 5
Fig. 5

Resonance Raman measurements of liquid toluene show correlation with the vapor-phase absorption features; (a) optical absorption of liquid toluene [22], (b) toluene resonance Raman spectra in this 1 nm wide excitation range.

Fig. 6
Fig. 6

Gaussian curve fits to Raman signals of the ν2 state; (a) 259 nm excitation Raman spectra, (b) Raman spectrum for 430 nm excitation.

Fig. 7
Fig. 7

Diagram shows; (a) a portion of the laser excitation absorption and self-absorption, (b) the Raman scattered signal, and (c) the absorption loss and scatter paths calculated using the distance X from the laser entry point. The distance din is the path length of the excitation wavelength, dout is the path length of the Raman shifted wavelengths, and the sample window is held at θ = 45°.

Fig. 8
Fig. 8

(a) Resonance enhanced Raman scatter around the 253 nm peak absorption wavelength. (b) Resonance enhanced Raman scatter around the 247.2 nm peak absorption wavelength in benzene.

Fig. 9
Fig. 9

Raman spectra on a wavelength scale showing fluorescence background of benzene liquid increase as the excitation steps toward longer wavelengths. The wavelength range of fluorescence emission is rather independent of the excitation wavelength, while the Raman signals (notably narrow peaks at 992 cm−1 and 1200 cm−1) shift with the excitation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Gaussian fit area ratio = area of 259 nm ν 2 area of 430 nm ν 2 = 1.56 2.11 =0.74±10%
I/I 0 =exp( -d in α excitation ),where d in =x/cos( θ )
I/I 0 =exp( -d out α Raman ),where d out =x/sin( θ ),
effective sampling depth = 0 x exp[ - α excitation x'/cos(θ)- α Raman x'/sin(θ) ] dx'.

Metrics