Abstract

We investigate the coupled dynamics of light and cold atoms in a unidirectional ring cavity, in the regime of low saturation and linear single-atom response. As the dispersive opto-mechanical coupling between light and the motional degrees of freedom of the atoms makes the dynamics nonlinear, we find that localized, nonlinearity-sustained and bistable structures can be encoded in the atomic density by means of appropriate control beams.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer Verlag, 2005).
    [CrossRef]
  2. T. Ackemann, W.J. Firth, and G.-L. Oppo, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. At. Mol. Opt. Phys.57, 323–421 (2009).
    [CrossRef]
  3. L.A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett.58, 2209–2211 (1987).
    [CrossRef] [PubMed]
  4. A.T. Black, H.W. Chan, and V. Vuletić, “Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering,” Phys. Rev. Lett.91, 203001 (2003).
    [CrossRef] [PubMed]
  5. H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys.85, 553–601 (2013).
    [CrossRef]
  6. R. Bonifacio and L. De Salvo, “Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms,” Nucl. Instrum. Methods Phys. Res. A341, 360–362 (1994).
    [CrossRef]
  7. C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
    [CrossRef] [PubMed]
  8. J.A. Greenberg and D.J. Gauthier, “High-order optical nonlinearity at low light levels,” Eur. Phys. Lett., 98, 24001 (2012).
    [CrossRef]
  9. J.A. Greenberg and D.J. Gauthier, “Steady-state, cavity-less, multimode superradiance,” Phys. Rev. A,86, 013823 (2012).
    [CrossRef]
  10. M. Saffman and Y. Wang, “Collective focusing and modulational instability of light and cold atoms” in Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys. 751, 1–20 (2008).
    [CrossRef]
  11. M. Muradyan, Y. Wang, W. Williams, and M. Saffman, “Absolute instability and pattern formation in cold atomic vapors,” in Nonlinear Guided Waves and Their Applications, vol. 90 of the 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper ThB29.
  12. K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature464, 1301–1306 (2010).
    [CrossRef] [PubMed]
  13. S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
    [CrossRef]
  14. M. Saffman, “Self-induced dipole force and filamentation instability of a matter wave,” Phys. Rev. Lett.81, 65–68 (1998).
    [CrossRef]
  15. J.A. Greenberg, B.L. Schmittberger, and D.J. Gauthier, “Bunching-induced optical nonlinearity and instability in cold atoms”, Opt. Express, 19.22535 (2011).
    [CrossRef] [PubMed]
  16. E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
    [CrossRef]
  17. T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
    [CrossRef]
  18. G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).
  19. R. El-Ganainy, D.N. Christoulides, C. Rotschild, and M. Segev, ”Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Expr.15, 10207–10218 (2007).
    [CrossRef]
  20. R. Gordon, J.T. Blakely, and D. Sinton, “Particle-optical self-trapping,” Phys. Rev. A75, 055801 (2007).
    [CrossRef]
  21. C. Conti, G. Ruocco, and S. Trillo, “Optical spatial solitons in soft matter,” Phys. Rev. Lett.95,183902 (2005).
    [CrossRef] [PubMed]
  22. P.J. Reece, E.M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett.98, 203902 (2007).
    [CrossRef] [PubMed]
  23. N. Akhmediev, J.M. Soto-Crespo, and H.R. Brand, “Dissipative solitons with energy and matter flows: Fundamental building blocks for the world of living organisms,” Phys. Lett. A377, 968–974 (2013).
    [CrossRef]
  24. J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldán, and G. de Valcárcel, “Dissipative structures in optomechanical cavities,” arXiv:1212.1364v1 (2013)
  25. M.K. Oberthaler and T. Pfau, “One-, two- and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R223 (2003)
    [CrossRef]
  26. J.T. Mendonça and R. Kaiser, “Photon bubbles in ultra-cold matter”, Phys. Rev. Lett.108, 033001 (2012)
    [CrossRef]
  27. T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
    [CrossRef]
  28. J.M. McSloy, W.J. Firth, G.K. Harkness, and G.-L. Oppo, “Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons,” Phys. Rev. E66, 046606 (2002)
    [CrossRef]

2013 (3)

H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys.85, 553–601 (2013).
[CrossRef]

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

N. Akhmediev, J.M. Soto-Crespo, and H.R. Brand, “Dissipative solitons with energy and matter flows: Fundamental building blocks for the world of living organisms,” Phys. Lett. A377, 968–974 (2013).
[CrossRef]

2012 (4)

J.T. Mendonça and R. Kaiser, “Photon bubbles in ultra-cold matter”, Phys. Rev. Lett.108, 033001 (2012)
[CrossRef]

E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
[CrossRef]

J.A. Greenberg and D.J. Gauthier, “High-order optical nonlinearity at low light levels,” Eur. Phys. Lett., 98, 24001 (2012).
[CrossRef]

J.A. Greenberg and D.J. Gauthier, “Steady-state, cavity-less, multimode superradiance,” Phys. Rev. A,86, 013823 (2012).
[CrossRef]

2011 (1)

2010 (1)

K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature464, 1301–1306 (2010).
[CrossRef] [PubMed]

2009 (1)

T. Ackemann, W.J. Firth, and G.-L. Oppo, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. At. Mol. Opt. Phys.57, 323–421 (2009).
[CrossRef]

2008 (1)

M. Saffman and Y. Wang, “Collective focusing and modulational instability of light and cold atoms” in Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys. 751, 1–20 (2008).
[CrossRef]

2007 (3)

R. El-Ganainy, D.N. Christoulides, C. Rotschild, and M. Segev, ”Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Expr.15, 10207–10218 (2007).
[CrossRef]

R. Gordon, J.T. Blakely, and D. Sinton, “Particle-optical self-trapping,” Phys. Rev. A75, 055801 (2007).
[CrossRef]

P.J. Reece, E.M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett.98, 203902 (2007).
[CrossRef] [PubMed]

2005 (1)

C. Conti, G. Ruocco, and S. Trillo, “Optical spatial solitons in soft matter,” Phys. Rev. Lett.95,183902 (2005).
[CrossRef] [PubMed]

2004 (1)

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

2003 (2)

A.T. Black, H.W. Chan, and V. Vuletić, “Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering,” Phys. Rev. Lett.91, 203001 (2003).
[CrossRef] [PubMed]

M.K. Oberthaler and T. Pfau, “One-, two- and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R223 (2003)
[CrossRef]

2002 (1)

J.M. McSloy, W.J. Firth, G.K. Harkness, and G.-L. Oppo, “Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons,” Phys. Rev. E66, 046606 (2002)
[CrossRef]

1999 (1)

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

1998 (1)

M. Saffman, “Self-induced dipole force and filamentation instability of a matter wave,” Phys. Rev. Lett.81, 65–68 (1998).
[CrossRef]

1995 (1)

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

1994 (1)

R. Bonifacio and L. De Salvo, “Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms,” Nucl. Instrum. Methods Phys. Res. A341, 360–362 (1994).
[CrossRef]

1987 (1)

L.A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett.58, 2209–2211 (1987).
[CrossRef] [PubMed]

Ackemann, T.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
[CrossRef]

T. Ackemann, W.J. Firth, and G.-L. Oppo, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. At. Mol. Opt. Phys.57, 323–421 (2009).
[CrossRef]

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Akhmediev, N.

N. Akhmediev, J.M. Soto-Crespo, and H.R. Brand, “Dissipative solitons with energy and matter flows: Fundamental building blocks for the world of living organisms,” Phys. Lett. A377, 968–974 (2013).
[CrossRef]

N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer Verlag, 2005).
[CrossRef]

Ankiewicz, A.

N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer Verlag, 2005).
[CrossRef]

Arnold, A.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Baumann, K.

K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature464, 1301–1306 (2010).
[CrossRef] [PubMed]

Black, A.T.

A.T. Black, H.W. Chan, and V. Vuletić, “Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering,” Phys. Rev. Lett.91, 203001 (2003).
[CrossRef] [PubMed]

Blakely, J.T.

R. Gordon, J.T. Blakely, and D. Sinton, “Particle-optical self-trapping,” Phys. Rev. A75, 055801 (2007).
[CrossRef]

Bonifacio, R.

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

R. Bonifacio and L. De Salvo, “Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms,” Nucl. Instrum. Methods Phys. Res. A341, 360–362 (1994).
[CrossRef]

Brand, H.R.

N. Akhmediev, J.M. Soto-Crespo, and H.R. Brand, “Dissipative solitons with energy and matter flows: Fundamental building blocks for the world of living organisms,” Phys. Lett. A377, 968–974 (2013).
[CrossRef]

Brenneke, F.

H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys.85, 553–601 (2013).
[CrossRef]

K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature464, 1301–1306 (2010).
[CrossRef] [PubMed]

Chan, H.W.

A.T. Black, H.W. Chan, and V. Vuletić, “Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering,” Phys. Rev. Lett.91, 203001 (2003).
[CrossRef] [PubMed]

Chikkatur, A.P.

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

Christoulides, D.N.

R. El-Ganainy, D.N. Christoulides, C. Rotschild, and M. Segev, ”Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Expr.15, 10207–10218 (2007).
[CrossRef]

Conti, C.

C. Conti, G. Ruocco, and S. Trillo, “Optical spatial solitons in soft matter,” Phys. Rev. Lett.95,183902 (2005).
[CrossRef] [PubMed]

Courteille, Ph.W.

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

Dalibard, J.

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

De Salvo, L.

R. Bonifacio and L. De Salvo, “Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms,” Nucl. Instrum. Methods Phys. Res. A341, 360–362 (1994).
[CrossRef]

de Valcárcel, G.

J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldán, and G. de Valcárcel, “Dissipative structures in optomechanical cavities,” arXiv:1212.1364v1 (2013)

Dholakia, K.

P.J. Reece, E.M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett.98, 203902 (2007).
[CrossRef] [PubMed]

Domokos, P.

H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys.85, 553–601 (2013).
[CrossRef]

El-Ganainy, R.

R. El-Ganainy, D.N. Christoulides, C. Rotschild, and M. Segev, ”Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Expr.15, 10207–10218 (2007).
[CrossRef]

Esslinger, T.

H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys.85, 553–601 (2013).
[CrossRef]

K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature464, 1301–1306 (2010).
[CrossRef] [PubMed]

Firth, W.J.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
[CrossRef]

T. Ackemann, W.J. Firth, and G.-L. Oppo, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. At. Mol. Opt. Phys.57, 323–421 (2009).
[CrossRef]

J.M. McSloy, W.J. Firth, G.K. Harkness, and G.-L. Oppo, “Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons,” Phys. Rev. E66, 046606 (2002)
[CrossRef]

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Furtlehner, C.

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

Gauthier, D.J.

J.A. Greenberg and D.J. Gauthier, “Steady-state, cavity-less, multimode superradiance,” Phys. Rev. A,86, 013823 (2012).
[CrossRef]

J.A. Greenberg and D.J. Gauthier, “High-order optical nonlinearity at low light levels,” Eur. Phys. Lett., 98, 24001 (2012).
[CrossRef]

J.A. Greenberg, B.L. Schmittberger, and D.J. Gauthier, “Bunching-induced optical nonlinearity and instability in cold atoms”, Opt. Express, 19.22535 (2011).
[CrossRef] [PubMed]

Gerz, C.

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

Gomes, P.M.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Gordon, R.

R. Gordon, J.T. Blakely, and D. Sinton, “Particle-optical self-trapping,” Phys. Rev. A75, 055801 (2007).
[CrossRef]

Greenberg, J.A.

J.A. Greenberg and D.J. Gauthier, “Steady-state, cavity-less, multimode superradiance,” Phys. Rev. A,86, 013823 (2012).
[CrossRef]

J.A. Greenberg and D.J. Gauthier, “High-order optical nonlinearity at low light levels,” Eur. Phys. Lett., 98, 24001 (2012).
[CrossRef]

J.A. Greenberg, B.L. Schmittberger, and D.J. Gauthier, “Bunching-induced optical nonlinearity and instability in cold atoms”, Opt. Express, 19.22535 (2011).
[CrossRef] [PubMed]

Guerlin, C.

K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature464, 1301–1306 (2010).
[CrossRef] [PubMed]

Harkness, G.K.

J.M. McSloy, W.J. Firth, G.K. Harkness, and G.-L. Oppo, “Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons,” Phys. Rev. E66, 046606 (2002)
[CrossRef]

Hodapp, T.W.

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

Inouye, S.

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

Kaiser, R.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

J.T. Mendonça and R. Kaiser, “Photon bubbles in ultra-cold matter”, Phys. Rev. Lett.108, 033001 (2012)
[CrossRef]

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Ketterle, W.

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

Kruse, D.

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

Labeyrie, G.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Lefever, R.

L.A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett.58, 2209–2211 (1987).
[CrossRef] [PubMed]

Lugiato, L.A.

L.A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett.58, 2209–2211 (1987).
[CrossRef] [PubMed]

McSloy, J.M.

J.M. McSloy, W.J. Firth, G.K. Harkness, and G.-L. Oppo, “Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons,” Phys. Rev. E66, 046606 (2002)
[CrossRef]

Mendonça, J.T.

J.T. Mendonça and R. Kaiser, “Photon bubbles in ultra-cold matter”, Phys. Rev. Lett.108, 033001 (2012)
[CrossRef]

Muradyan, M.

M. Muradyan, Y. Wang, W. Williams, and M. Saffman, “Absolute instability and pattern formation in cold atomic vapors,” in Nonlinear Guided Waves and Their Applications, vol. 90 of the 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper ThB29.

Navarrete-Benlloch, C.

J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldán, and G. de Valcárcel, “Dissipative structures in optomechanical cavities,” arXiv:1212.1364v1 (2013)

Oberthaler, M.K.

M.K. Oberthaler and T. Pfau, “One-, two- and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R223 (2003)
[CrossRef]

Oppo, G.-L.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
[CrossRef]

T. Ackemann, W.J. Firth, and G.-L. Oppo, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. At. Mol. Opt. Phys.57, 323–421 (2009).
[CrossRef]

J.M. McSloy, W.J. Firth, G.K. Harkness, and G.-L. Oppo, “Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons,” Phys. Rev. E66, 046606 (2002)
[CrossRef]

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Patera, G.

J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldán, and G. de Valcárcel, “Dissipative structures in optomechanical cavities,” arXiv:1212.1364v1 (2013)

Pfau, T.

M.K. Oberthaler and T. Pfau, “One-, two- and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R223 (2003)
[CrossRef]

Phillips, W.D.

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

Piovella, N.

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

Pritchard, D.E.

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

Reece, P.J.

P.J. Reece, E.M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett.98, 203902 (2007).
[CrossRef] [PubMed]

Ritsch, H.

H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys.85, 553–601 (2013).
[CrossRef]

Robb, G.R.M.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
[CrossRef]

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Roldán, E.

J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldán, and G. de Valcárcel, “Dissipative structures in optomechanical cavities,” arXiv:1212.1364v1 (2013)

Rotschild, C.

R. El-Ganainy, D.N. Christoulides, C. Rotschild, and M. Segev, ”Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Expr.15, 10207–10218 (2007).
[CrossRef]

Ruiz-Rivas, J.

J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldán, and G. de Valcárcel, “Dissipative structures in optomechanical cavities,” arXiv:1212.1364v1 (2013)

Ruocco, G.

C. Conti, G. Ruocco, and S. Trillo, “Optical spatial solitons in soft matter,” Phys. Rev. Lett.95,183902 (2005).
[CrossRef] [PubMed]

Saffman, M.

M. Saffman and Y. Wang, “Collective focusing and modulational instability of light and cold atoms” in Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys. 751, 1–20 (2008).
[CrossRef]

M. Saffman, “Self-induced dipole force and filamentation instability of a matter wave,” Phys. Rev. Lett.81, 65–68 (1998).
[CrossRef]

M. Muradyan, Y. Wang, W. Williams, and M. Saffman, “Absolute instability and pattern formation in cold atomic vapors,” in Nonlinear Guided Waves and Their Applications, vol. 90 of the 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper ThB29.

Schmittberger, B.L.

Segev, M.

R. El-Ganainy, D.N. Christoulides, C. Rotschild, and M. Segev, ”Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Expr.15, 10207–10218 (2007).
[CrossRef]

Sinton, D.

R. Gordon, J.T. Blakely, and D. Sinton, “Particle-optical self-trapping,” Phys. Rev. A75, 055801 (2007).
[CrossRef]

Slama, S.

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

Soto-Crespo, J.M.

N. Akhmediev, J.M. Soto-Crespo, and H.R. Brand, “Dissipative solitons with energy and matter flows: Fundamental building blocks for the world of living organisms,” Phys. Lett. A377, 968–974 (2013).
[CrossRef]

Stamper-Kurn, D.M.

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

Stenger, J.

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

Tesio, E.

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
[CrossRef]

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

Trillo, S.

C. Conti, G. Ruocco, and S. Trillo, “Optical spatial solitons in soft matter,” Phys. Rev. Lett.95,183902 (2005).
[CrossRef] [PubMed]

von Cube, C.

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

Vuletic, V.

A.T. Black, H.W. Chan, and V. Vuletić, “Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering,” Phys. Rev. Lett.91, 203001 (2003).
[CrossRef] [PubMed]

Wang, Y.

M. Saffman and Y. Wang, “Collective focusing and modulational instability of light and cold atoms” in Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys. 751, 1–20 (2008).
[CrossRef]

M. Muradyan, Y. Wang, W. Williams, and M. Saffman, “Absolute instability and pattern formation in cold atomic vapors,” in Nonlinear Guided Waves and Their Applications, vol. 90 of the 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper ThB29.

Westbrook, C.I.

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

Williams, W.

M. Muradyan, Y. Wang, W. Williams, and M. Saffman, “Absolute instability and pattern formation in cold atomic vapors,” in Nonlinear Guided Waves and Their Applications, vol. 90 of the 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper ThB29.

Wright, E.M.

P.J. Reece, E.M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett.98, 203902 (2007).
[CrossRef] [PubMed]

Zimmermann, C.

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

Adv. At. Mol. Opt. Phys. (1)

T. Ackemann, W.J. Firth, and G.-L. Oppo, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. At. Mol. Opt. Phys.57, 323–421 (2009).
[CrossRef]

Appl. Phys. B (1)

T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, “Three-dimensional spatial diffusion in optical molasses,” Appl. Phys. B60, 135–143 (1995)
[CrossRef]

Dissipative solitons: from optics to biology and medicine (1)

M. Saffman and Y. Wang, “Collective focusing and modulational instability of light and cold atoms” in Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys. 751, 1–20 (2008).
[CrossRef]

Eur. Phys. Lett. (1)

J.A. Greenberg and D.J. Gauthier, “High-order optical nonlinearity at low light levels,” Eur. Phys. Lett., 98, 24001 (2012).
[CrossRef]

J. Phys.: Condens. Matter (1)

M.K. Oberthaler and T. Pfau, “One-, two- and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R223 (2003)
[CrossRef]

Nature (1)

K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature464, 1301–1306 (2010).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

R. Bonifacio and L. De Salvo, “Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms,” Nucl. Instrum. Methods Phys. Res. A341, 360–362 (1994).
[CrossRef]

Opt. Expr. (1)

R. El-Ganainy, D.N. Christoulides, C. Rotschild, and M. Segev, ”Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Expr.15, 10207–10218 (2007).
[CrossRef]

Opt. Express (1)

Phys. Lett. A (1)

N. Akhmediev, J.M. Soto-Crespo, and H.R. Brand, “Dissipative solitons with energy and matter flows: Fundamental building blocks for the world of living organisms,” Phys. Lett. A377, 968–974 (2013).
[CrossRef]

Phys. Rev. A (2)

R. Gordon, J.T. Blakely, and D. Sinton, “Particle-optical self-trapping,” Phys. Rev. A75, 055801 (2007).
[CrossRef]

E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-L. Oppo, “Spontaneous optomechanical pattern formation in cold atoms,” Phys. Rev. A86,031801(R) (2012).
[CrossRef]

Phys. Rev. A, (1)

J.A. Greenberg and D.J. Gauthier, “Steady-state, cavity-less, multimode superradiance,” Phys. Rev. A,86, 013823 (2012).
[CrossRef]

Phys. Rev. E (1)

J.M. McSloy, W.J. Firth, G.K. Harkness, and G.-L. Oppo, “Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons,” Phys. Rev. E66, 046606 (2002)
[CrossRef]

Phys. Rev. Lett. (7)

J.T. Mendonça and R. Kaiser, “Photon bubbles in ultra-cold matter”, Phys. Rev. Lett.108, 033001 (2012)
[CrossRef]

C. Conti, G. Ruocco, and S. Trillo, “Optical spatial solitons in soft matter,” Phys. Rev. Lett.95,183902 (2005).
[CrossRef] [PubMed]

P.J. Reece, E.M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett.98, 203902 (2007).
[CrossRef] [PubMed]

M. Saffman, “Self-induced dipole force and filamentation instability of a matter wave,” Phys. Rev. Lett.81, 65–68 (1998).
[CrossRef]

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, and R. Bonifacio, “Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing,” Phys. Rev. Lett.93, 083601 (2004).
[CrossRef] [PubMed]

L.A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett.58, 2209–2211 (1987).
[CrossRef] [PubMed]

A.T. Black, H.W. Chan, and V. Vuletić, “Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering,” Phys. Rev. Lett.91, 203001 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys.85, 553–601 (2013).
[CrossRef]

Science (1)

S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein Condensate,” Science5427, 571–574 (1999).
[CrossRef]

Other (5)

M. Muradyan, Y. Wang, W. Williams, and M. Saffman, “Absolute instability and pattern formation in cold atomic vapors,” in Nonlinear Guided Waves and Their Applications, vol. 90 of the 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper ThB29.

T. Ackemann, G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, and R. Kaiser, “Hexagonal self-structuring due to optomechanical nonlinearities in cold atomic gases,” in Nonlinear Optics (NLO), 2013 OSA Topical Meeting (Optical Society of America, 2013), paper NW3B.4.
[CrossRef]

G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth, G.R.M. Robb, A. Arnold, R. Kaiser, and T. Ackemann, “Optomechanical self-structuring in cold atomic gases,” arXiv:1308.1226 (2013).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer Verlag, 2005).
[CrossRef]

J. Ruiz-Rivas, C. Navarrete-Benlloch, G. Patera, E. Roldán, and G. de Valcárcel, “Dissipative structures in optomechanical cavities,” arXiv:1212.1364v1 (2013)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A plane wave of amplitude Ain drives a single-longitudinal-mode cavity characterized by a length , mirror transmittivity ��, and lifetime κ−1. The intracavity field f interacts with a cloud of two-level laser-cooled atoms (optical density b0, temperature T). Optical molasses are assumed to act on the cloud during such interaction. A self-localized state for the cloud density and the optical field can be sustained by the homogeneous driving (right inset, the red-detuned case is shown).

Fig. 2
Fig. 2

(a) Crossing the intensity threshold Ic for self-structuring the homogeneous solution becomes unstable and a ‘patterned’ solution for the density n(x) bifurcates subcritically (blue circles). As the control parameter Ih is decreased, the pattern survives below the critical value Ic and loses stability for Ih/Ic < 0.9 (red squares). Parameters are: σ = 25, γ = 4.5, and θ = −3.7. M denotes the maximum deviation from the background value nh = 1. The right panel (b) shows a solution obtained at Ih/Ic = 0.93, displaying a dissipative soliton and a three-peaks localized pattern.

Fig. 3
Fig. 3

Two-dimensional intensity (left) and density (right) profiles obtained from numerical simulations for the same parameters as Fig. 2(a) and Ih/Ic = 0.93. Two stable, self-localized structures are formed for the atomic density, sustained by expelling atoms from (attracting atoms towards) regions of high optical intensity in the blue (red) detuned regime.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f t = ( 1 + i θ ) f + A in i γ n f + i 2 f .
n t = h ¯ δ 2 k B T D [ n | f | 2 ] + D 2 n ,
n eq ( x ) = Ω exp [ σ | f ( x ) | 2 ] Ω d x exp [ σ | f ( x ) | 2 ] σ = h ¯ δ 2 k B T ,

Metrics