Abstract

We describe a novel measurement method to study the contact line of a droplet at nanoscale level. The method is based on Total Internal Reflection Fluorescence Microscopy (TIRFM), which uses an evanescent excitation field produced by total internal reflection of light. The evanescent field depends on the angle of the incident light and has an exponential intensity decay, characterized by the penetration depth. The penetration depth is determined by imaging a fluorescent particle probe that is traversed using an Atomic Force Microscopy (AFM) setup. The result confirms the exponential behavior of the evanescent field intensity, and the value of the penetration depth also corresponds with the value predicted based on the optical configuration. By using the intensity distribution of a fluorescent dye and the value for the penetration depth of the evanescent wave, it is possible to reconstruct the interface of a partial wetting droplet. The reconstructed interface based on TIRFM is in good agreement with the interface obtained from two reference measurements: non-disturbing AFM-imaging and conventional contact angle measurement. The latter lacks spatial resolution, while the former is limited to particular droplets. This new non-contact measurement does not suffer from these drawbacks, making it a very useful tool to study the fundamental wetting behavior of both stationary and dynamic interfaces.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Interface Sci.35(1), 85–101(1971).
    [CrossRef]
  2. P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys.57(3), 827–863 (1985).
    [CrossRef]
  3. L. M. Hocking, “A moving fluid interface. Part 2. The removal of the force singularity by a slip flow,” J. Fluid Mech.79(2), 209–229 (1977).
    [CrossRef]
  4. J. - D. Chen and N. Wada, “Wetting dynamics of the edge of a spreading drop,” Phys. Rev. Lett.62(26), 3050–3053 (1989).
    [CrossRef] [PubMed]
  5. H. P. Kavehpour, B. Ovryn, and G. H. McKinley, “Microscopic and macroscopic structure of the precursor layer in spreading viscous drops,” Phys. Rev. Lett.91(19), 196104 (2003).
    [CrossRef] [PubMed]
  6. A. Hoang and H. P. Kavehpour, “Dynamics of nanoscale precursor film near a moving contact line of spreading drops,” Phys. Rev. Lett.106(25), 254501 (2011).
    [CrossRef] [PubMed]
  7. A. Hoang, G. Berteloot, P. Sharif-Kashani, and H. P. Kavehpour, “Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy,” Exp. Fluids52(6), 1657–1662 (2012).
    [CrossRef]
  8. M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys.: Condens. Matter24, 243102 (2012).
    [CrossRef]
  9. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
    [CrossRef] [PubMed]
  10. F. de Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics (Springer, 2001).
  11. A. Sarkar, R. B. Robertson, and J. M. Fernandez, “Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave,” Proc. Natl. Acad. Sci. U.S.A.101(35), 12882–12886 (2004).
    [CrossRef] [PubMed]
  12. S. Harlepp, J. Robert, N. C. Darnton, and D. Chatenay, “Subnanometric measurements of evanescent wave penetration depth using total internal reflection microscopy combined with fluorescent correlation spectroscopy,” Appl. Phys. Lett.85(17), 3917–3919 (2004).
    [CrossRef]
  13. A. Fery, T. Pompe, and S. Herminghaus, “Nanometer resolution of liquid surface topography by scanning force microscopy,” J. Adhes. Sci. Technol.13(10), 1071–1083 (1999).
    [CrossRef]
  14. S. Herminghaus, T. Pompe, and A. Fery, “Scanning force microscopy investigation of liquid structures and its application to fundamental wetting research,” J. Adhes. Sci. Technol.14(14), 1767–1782 (2000).
    [CrossRef]
  15. F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
    [CrossRef]
  16. A. Checco, P. Guenoun, and J. Daillant, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett.91(18), 186101 (2003).
    [CrossRef] [PubMed]
  17. P. Fontaine, P. Guenoun, and J. Daillant, “A critical look at surface force measurement using a commercial atomic force microscope in the noncontact mode,” Rev. Sci. Instrum.68(11), 4145–4151 (1997).
    [CrossRef]
  18. M. Franken, C. Poelma, and J. Westerweel, “Dynamics of precursor films,” presented at the 65th Annual Meeting of the APS Division of Fluid Dynamics, San Diego, USA, 18–20 Nov. 2012.

2012

A. Hoang, G. Berteloot, P. Sharif-Kashani, and H. P. Kavehpour, “Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy,” Exp. Fluids52(6), 1657–1662 (2012).
[CrossRef]

M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys.: Condens. Matter24, 243102 (2012).
[CrossRef]

2011

A. Hoang and H. P. Kavehpour, “Dynamics of nanoscale precursor film near a moving contact line of spreading drops,” Phys. Rev. Lett.106(25), 254501 (2011).
[CrossRef] [PubMed]

2004

A. Sarkar, R. B. Robertson, and J. M. Fernandez, “Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave,” Proc. Natl. Acad. Sci. U.S.A.101(35), 12882–12886 (2004).
[CrossRef] [PubMed]

S. Harlepp, J. Robert, N. C. Darnton, and D. Chatenay, “Subnanometric measurements of evanescent wave penetration depth using total internal reflection microscopy combined with fluorescent correlation spectroscopy,” Appl. Phys. Lett.85(17), 3917–3919 (2004).
[CrossRef]

2003

A. Checco, P. Guenoun, and J. Daillant, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett.91(18), 186101 (2003).
[CrossRef] [PubMed]

H. P. Kavehpour, B. Ovryn, and G. H. McKinley, “Microscopic and macroscopic structure of the precursor layer in spreading viscous drops,” Phys. Rev. Lett.91(19), 196104 (2003).
[CrossRef] [PubMed]

2002

F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
[CrossRef]

2000

S. Herminghaus, T. Pompe, and A. Fery, “Scanning force microscopy investigation of liquid structures and its application to fundamental wetting research,” J. Adhes. Sci. Technol.14(14), 1767–1782 (2000).
[CrossRef]

1999

A. Fery, T. Pompe, and S. Herminghaus, “Nanometer resolution of liquid surface topography by scanning force microscopy,” J. Adhes. Sci. Technol.13(10), 1071–1083 (1999).
[CrossRef]

1997

P. Fontaine, P. Guenoun, and J. Daillant, “A critical look at surface force measurement using a commercial atomic force microscope in the noncontact mode,” Rev. Sci. Instrum.68(11), 4145–4151 (1997).
[CrossRef]

1989

J. - D. Chen and N. Wada, “Wetting dynamics of the edge of a spreading drop,” Phys. Rev. Lett.62(26), 3050–3053 (1989).
[CrossRef] [PubMed]

1985

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys.57(3), 827–863 (1985).
[CrossRef]

1984

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

1977

L. M. Hocking, “A moving fluid interface. Part 2. The removal of the force singularity by a slip flow,” J. Fluid Mech.79(2), 209–229 (1977).
[CrossRef]

1971

C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Interface Sci.35(1), 85–101(1971).
[CrossRef]

Axelrod, D.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

Becker, T.

F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
[CrossRef]

Berteloot, G.

A. Hoang, G. Berteloot, P. Sharif-Kashani, and H. P. Kavehpour, “Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy,” Exp. Fluids52(6), 1657–1662 (2012).
[CrossRef]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

Cazabat, A. M.

M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys.: Condens. Matter24, 243102 (2012).
[CrossRef]

Chatenay, D.

S. Harlepp, J. Robert, N. C. Darnton, and D. Chatenay, “Subnanometric measurements of evanescent wave penetration depth using total internal reflection microscopy combined with fluorescent correlation spectroscopy,” Appl. Phys. Lett.85(17), 3917–3919 (2004).
[CrossRef]

Checco, A.

A. Checco, P. Guenoun, and J. Daillant, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett.91(18), 186101 (2003).
[CrossRef] [PubMed]

Chen, J. - D.

J. - D. Chen and N. Wada, “Wetting dynamics of the edge of a spreading drop,” Phys. Rev. Lett.62(26), 3050–3053 (1989).
[CrossRef] [PubMed]

Daillant, J.

A. Checco, P. Guenoun, and J. Daillant, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett.91(18), 186101 (2003).
[CrossRef] [PubMed]

P. Fontaine, P. Guenoun, and J. Daillant, “A critical look at surface force measurement using a commercial atomic force microscope in the noncontact mode,” Rev. Sci. Instrum.68(11), 4145–4151 (1997).
[CrossRef]

Darnton, N. C.

S. Harlepp, J. Robert, N. C. Darnton, and D. Chatenay, “Subnanometric measurements of evanescent wave penetration depth using total internal reflection microscopy combined with fluorescent correlation spectroscopy,” Appl. Phys. Lett.85(17), 3917–3919 (2004).
[CrossRef]

de Fornel, F.

F. de Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics (Springer, 2001).

de Gennes, P. G.

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys.57(3), 827–863 (1985).
[CrossRef]

Dietrich, S.

M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys.: Condens. Matter24, 243102 (2012).
[CrossRef]

Fernandez, J. M.

A. Sarkar, R. B. Robertson, and J. M. Fernandez, “Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave,” Proc. Natl. Acad. Sci. U.S.A.101(35), 12882–12886 (2004).
[CrossRef] [PubMed]

Fery, A.

S. Herminghaus, T. Pompe, and A. Fery, “Scanning force microscopy investigation of liquid structures and its application to fundamental wetting research,” J. Adhes. Sci. Technol.14(14), 1767–1782 (2000).
[CrossRef]

A. Fery, T. Pompe, and S. Herminghaus, “Nanometer resolution of liquid surface topography by scanning force microscopy,” J. Adhes. Sci. Technol.13(10), 1071–1083 (1999).
[CrossRef]

Fontaine, P.

P. Fontaine, P. Guenoun, and J. Daillant, “A critical look at surface force measurement using a commercial atomic force microscope in the noncontact mode,” Rev. Sci. Instrum.68(11), 4145–4151 (1997).
[CrossRef]

Franken, M.

M. Franken, C. Poelma, and J. Westerweel, “Dynamics of precursor films,” presented at the 65th Annual Meeting of the APS Division of Fluid Dynamics, San Diego, USA, 18–20 Nov. 2012.

Guenoun, P.

A. Checco, P. Guenoun, and J. Daillant, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett.91(18), 186101 (2003).
[CrossRef] [PubMed]

P. Fontaine, P. Guenoun, and J. Daillant, “A critical look at surface force measurement using a commercial atomic force microscope in the noncontact mode,” Rev. Sci. Instrum.68(11), 4145–4151 (1997).
[CrossRef]

Harlepp, S.

S. Harlepp, J. Robert, N. C. Darnton, and D. Chatenay, “Subnanometric measurements of evanescent wave penetration depth using total internal reflection microscopy combined with fluorescent correlation spectroscopy,” Appl. Phys. Lett.85(17), 3917–3919 (2004).
[CrossRef]

Herminghaus, S.

F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
[CrossRef]

S. Herminghaus, T. Pompe, and A. Fery, “Scanning force microscopy investigation of liquid structures and its application to fundamental wetting research,” J. Adhes. Sci. Technol.14(14), 1767–1782 (2000).
[CrossRef]

A. Fery, T. Pompe, and S. Herminghaus, “Nanometer resolution of liquid surface topography by scanning force microscopy,” J. Adhes. Sci. Technol.13(10), 1071–1083 (1999).
[CrossRef]

Hoang, A.

A. Hoang, G. Berteloot, P. Sharif-Kashani, and H. P. Kavehpour, “Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy,” Exp. Fluids52(6), 1657–1662 (2012).
[CrossRef]

A. Hoang and H. P. Kavehpour, “Dynamics of nanoscale precursor film near a moving contact line of spreading drops,” Phys. Rev. Lett.106(25), 254501 (2011).
[CrossRef] [PubMed]

Hocking, L. M.

L. M. Hocking, “A moving fluid interface. Part 2. The removal of the force singularity by a slip flow,” J. Fluid Mech.79(2), 209–229 (1977).
[CrossRef]

Huh, C.

C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Interface Sci.35(1), 85–101(1971).
[CrossRef]

Kavehpour, H. P.

A. Hoang, G. Berteloot, P. Sharif-Kashani, and H. P. Kavehpour, “Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy,” Exp. Fluids52(6), 1657–1662 (2012).
[CrossRef]

A. Hoang and H. P. Kavehpour, “Dynamics of nanoscale precursor film near a moving contact line of spreading drops,” Phys. Rev. Lett.106(25), 254501 (2011).
[CrossRef] [PubMed]

H. P. Kavehpour, B. Ovryn, and G. H. McKinley, “Microscopic and macroscopic structure of the precursor layer in spreading viscous drops,” Phys. Rev. Lett.91(19), 196104 (2003).
[CrossRef] [PubMed]

Kohonen, M.

F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
[CrossRef]

McKinley, G. H.

H. P. Kavehpour, B. Ovryn, and G. H. McKinley, “Microscopic and macroscopic structure of the precursor layer in spreading viscous drops,” Phys. Rev. Lett.91(19), 196104 (2003).
[CrossRef] [PubMed]

Mugele, F.

F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
[CrossRef]

Nikopoulos, R.

F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
[CrossRef]

Oshanin, G.

M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys.: Condens. Matter24, 243102 (2012).
[CrossRef]

Ovryn, B.

H. P. Kavehpour, B. Ovryn, and G. H. McKinley, “Microscopic and macroscopic structure of the precursor layer in spreading viscous drops,” Phys. Rev. Lett.91(19), 196104 (2003).
[CrossRef] [PubMed]

Poelma, C.

M. Franken, C. Poelma, and J. Westerweel, “Dynamics of precursor films,” presented at the 65th Annual Meeting of the APS Division of Fluid Dynamics, San Diego, USA, 18–20 Nov. 2012.

Pompe, T.

S. Herminghaus, T. Pompe, and A. Fery, “Scanning force microscopy investigation of liquid structures and its application to fundamental wetting research,” J. Adhes. Sci. Technol.14(14), 1767–1782 (2000).
[CrossRef]

A. Fery, T. Pompe, and S. Herminghaus, “Nanometer resolution of liquid surface topography by scanning force microscopy,” J. Adhes. Sci. Technol.13(10), 1071–1083 (1999).
[CrossRef]

Popescu, M. N.

M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys.: Condens. Matter24, 243102 (2012).
[CrossRef]

Robert, J.

S. Harlepp, J. Robert, N. C. Darnton, and D. Chatenay, “Subnanometric measurements of evanescent wave penetration depth using total internal reflection microscopy combined with fluorescent correlation spectroscopy,” Appl. Phys. Lett.85(17), 3917–3919 (2004).
[CrossRef]

Robertson, R. B.

A. Sarkar, R. B. Robertson, and J. M. Fernandez, “Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave,” Proc. Natl. Acad. Sci. U.S.A.101(35), 12882–12886 (2004).
[CrossRef] [PubMed]

Sarkar, A.

A. Sarkar, R. B. Robertson, and J. M. Fernandez, “Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave,” Proc. Natl. Acad. Sci. U.S.A.101(35), 12882–12886 (2004).
[CrossRef] [PubMed]

Scriven, L. E.

C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Interface Sci.35(1), 85–101(1971).
[CrossRef]

Sharif-Kashani, P.

A. Hoang, G. Berteloot, P. Sharif-Kashani, and H. P. Kavehpour, “Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy,” Exp. Fluids52(6), 1657–1662 (2012).
[CrossRef]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

Wada, N.

J. - D. Chen and N. Wada, “Wetting dynamics of the edge of a spreading drop,” Phys. Rev. Lett.62(26), 3050–3053 (1989).
[CrossRef] [PubMed]

Westerweel, J.

M. Franken, C. Poelma, and J. Westerweel, “Dynamics of precursor films,” presented at the 65th Annual Meeting of the APS Division of Fluid Dynamics, San Diego, USA, 18–20 Nov. 2012.

Annu. Rev. Biophys. Bioeng.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Harlepp, J. Robert, N. C. Darnton, and D. Chatenay, “Subnanometric measurements of evanescent wave penetration depth using total internal reflection microscopy combined with fluorescent correlation spectroscopy,” Appl. Phys. Lett.85(17), 3917–3919 (2004).
[CrossRef]

Exp. Fluids

A. Hoang, G. Berteloot, P. Sharif-Kashani, and H. P. Kavehpour, “Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy,” Exp. Fluids52(6), 1657–1662 (2012).
[CrossRef]

J. Adhes. Sci. Technol.

A. Fery, T. Pompe, and S. Herminghaus, “Nanometer resolution of liquid surface topography by scanning force microscopy,” J. Adhes. Sci. Technol.13(10), 1071–1083 (1999).
[CrossRef]

S. Herminghaus, T. Pompe, and A. Fery, “Scanning force microscopy investigation of liquid structures and its application to fundamental wetting research,” J. Adhes. Sci. Technol.14(14), 1767–1782 (2000).
[CrossRef]

F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, “Capillarity at the nanoscale: an AFM view,” J. Adhes. Sci. Technol.16(7), 951–964 (2002).
[CrossRef]

J. Colloid Interface Sci.

C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Interface Sci.35(1), 85–101(1971).
[CrossRef]

J. Fluid Mech.

L. M. Hocking, “A moving fluid interface. Part 2. The removal of the force singularity by a slip flow,” J. Fluid Mech.79(2), 209–229 (1977).
[CrossRef]

J. Phys.: Condens. Matter

M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys.: Condens. Matter24, 243102 (2012).
[CrossRef]

Phys. Rev. Lett.

J. - D. Chen and N. Wada, “Wetting dynamics of the edge of a spreading drop,” Phys. Rev. Lett.62(26), 3050–3053 (1989).
[CrossRef] [PubMed]

H. P. Kavehpour, B. Ovryn, and G. H. McKinley, “Microscopic and macroscopic structure of the precursor layer in spreading viscous drops,” Phys. Rev. Lett.91(19), 196104 (2003).
[CrossRef] [PubMed]

A. Hoang and H. P. Kavehpour, “Dynamics of nanoscale precursor film near a moving contact line of spreading drops,” Phys. Rev. Lett.106(25), 254501 (2011).
[CrossRef] [PubMed]

A. Checco, P. Guenoun, and J. Daillant, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett.91(18), 186101 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. Sarkar, R. B. Robertson, and J. M. Fernandez, “Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave,” Proc. Natl. Acad. Sci. U.S.A.101(35), 12882–12886 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys.

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys.57(3), 827–863 (1985).
[CrossRef]

Rev. Sci. Instrum.

P. Fontaine, P. Guenoun, and J. Daillant, “A critical look at surface force measurement using a commercial atomic force microscope in the noncontact mode,” Rev. Sci. Instrum.68(11), 4145–4151 (1997).
[CrossRef]

Other

M. Franken, C. Poelma, and J. Westerweel, “Dynamics of precursor films,” presented at the 65th Annual Meeting of the APS Division of Fluid Dynamics, San Diego, USA, 18–20 Nov. 2012.

F. de Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics