Abstract

We present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz. The 3-dB bandwidth of the SBD detector is also investigated at approximately 180 GHz. For implementing an array-type SBD detector by a simple fabrication process to achieve a high yield, a structure comprising an SiNx layer instead of an air bridge between the anode and the cathode is designed. THz line beam imaging using a Gunn diode emitter with a center frequency of 250 GHz and a 1 × 20 SBD array detector is successfully demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Self-scanned anode array with a microchannel plate electron multiplier: the SSANACON

A. Lyle Broadfoot and B. R. Sandel
Appl. Opt. 16(6) 1533-1538 (1977)

Terahertz emission from electric field singularities in biased semiconductors

I. Brener, M. C. Nuss, D. Dykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, and K. West
Opt. Lett. 21(23) 1924-1926 (1996)

Broadband terahertz imaging with highly sensitive silicon CMOS detectors

Franz Schuster, Dominique Coquillat, Hadley Videlier, Maciej Sakowicz, Frédéric Teppe, Laurent Dussopt, Benoît Giffard, Thomas Skotnicki, and Wojciech Knap
Opt. Express 19(8) 7827-7832 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
    [Crossref]
  3. N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE 8363, 83630A (2012).
    [Crossref]
  4. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
    [Crossref]
  5. C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
    [Crossref]
  6. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
    [Crossref]
  7. R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).
  8. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
    [Crossref] [PubMed]
  9. V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
    [Crossref]
  10. U. V. Bhapkar, Y. Li, and R. J. Mattauch, “InGaAs-InP heteroepitaxial Schottky barrier diodes for terahertz applications,” Proc. ISSTT, 661–677 (1991).
  11. I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).
  12. A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
    [Crossref]
  13. J. L. Hesler and T. W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors,” Proc. ISSTT, 89–92 (2007).
  14. J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).
  15. N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
    [Crossref]
  16. N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
    [Crossref]
  17. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
    [Crossref] [PubMed]
  18. S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J. W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
    [Crossref] [PubMed]

2013 (2)

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

2012 (2)

2011 (5)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

2010 (1)

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

2008 (2)

J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

2005 (1)

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Afshari, E.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Bhapkar, U. V.

U. V. Bhapkar, Y. Li, and R. J. Mattauch, “InGaAs-InP heteroepitaxial Schottky barrier diodes for terahertz applications,” Proc. ISSTT, 661–677 (1991).

Choi, S.-W.

Chun, H. S.

Cojocari, O.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).

Coquillat, D.

Crowe, T. W.

J. L. Hesler and T. W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors,” Proc. ISSTT, 89–92 (2007).

Duan, Y.

J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).

Dussopt, L.

Ermolaev, D. M.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Gavrilenko, V. I.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Gibson, H.

I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).

Giffard, B.

Goebel, T.

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

Han, R.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Han, S.-P.

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J. W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
[Crossref] [PubMed]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

Hartnagel, H. L.

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).

Hesler, J. L.

J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).

J. L. Hesler and T. W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors,” Proc. ISSTT, 89–92 (2007).

Hosako, I.

N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE 8363, 83630A (2012).
[Crossref]

Hu, Q.

N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE 8363, 83630A (2012).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Hübers, H.-W.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Hwang, J.-S.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Ishi, T.

N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE 8363, 83630A (2012).
[Crossref]

Jeon, M. Y.

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

Karpowicz, N.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Kim, D. Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Kim, N.

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J. W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
[Crossref] [PubMed]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

Kim, Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Klushin, A.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Knap, W.

Ko, H.

Kumar, S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Lee, A. W. M.

N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE 8363, 83630A (2012).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Lee, C. W.

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

Lee, D.

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

Lee, D. H.

Leem, Y. A.

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

Li, Y.

U. V. Bhapkar, Y. Li, and R. J. Mattauch, “InGaAs-InP heteroepitaxial Schottky barrier diodes for terahertz applications,” Proc. ISSTT, 661–677 (1991).

Lin, K.-I.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Liu, L.

J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).

Maleev, N. A.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Maremyanin, K. V.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Mattauch, R. J.

U. V. Bhapkar, Y. Li, and R. J. Mattauch, “InGaAs-InP heteroepitaxial Schottky barrier diodes for terahertz applications,” Proc. ISSTT, 661–677 (1991).

Meissner, P.

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

Moon, K.

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

Moon, S.-H.

Müller, A.-S.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Noh, S. K.

O, K. K.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Oda, N.

N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE 8363, 83630A (2012).
[Crossref]

Oprea, I.

I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).

Park, J. W.

Park, J.-W.

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

Park, K. H.

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J. W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
[Crossref] [PubMed]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
[Crossref] [PubMed]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

Park, S.-H.

Popov, V. V.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Reno, J. L.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Rogalski, A.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Ryu, H.-C.

Sakowicz, M.

Schçnherr, D.

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

Schuster, F.

Semenov, A.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Shapoval, S. Y.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Shichijo, H.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Shin, J.-H.

Sizov, F.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Skotnicki, T.

Song, F.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Sydlo, C.

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

Teppe, F.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Videlier, H.

Walber, A.

I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).

Weikle, R. M.

J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).

Williams, B. S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Xu, H.

J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).

Xu, J.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Yoon, Y.-J.

Zemlyakov, V. E.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Zhang, C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Zhang, X.-C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Zhang, Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Zhong, H.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Zimmermann, R.

I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).

Appl. Phys. Lett. (2)

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

ETRI J. (1)

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011).
[Crossref]

Frequenz (1)

C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62(5-6), 107–110 (2008).
[Crossref]

IEEE Electron Device Lett. (1)

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

IEEE J. Solid-St. Circulation (1)

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

IEEE Photon. Technol. Lett. (1)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

IRMMW-THz (1)

J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz 15–19(Sep), 1–2 (2008).

Laser Phys. Lett. (1)

N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Proc. SPIE (1)

N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE 8363, 83630A (2012).
[Crossref]

Other (3)

U. V. Bhapkar, Y. Li, and R. J. Mattauch, “InGaAs-InP heteroepitaxial Schottky barrier diodes for terahertz applications,” Proc. ISSTT, 661–677 (1991).

I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).

J. L. Hesler and T. W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors,” Proc. ISSTT, 89–92 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Fabrication process of a 1 × 20 InGaAs Schottky barrier diode (SBD) detector, (b) SEM image of a fabricated SBD array sample, and (c) its I-V characteristics.

Fig. 2
Fig. 2

(a) Fiber-coupled CW THz spectroscopy system setup and (b) detected THz signal measured by using the CW THz system.

Fig. 3
Fig. 3

(a) THz pulse imaging system setup using a THz-TDS emitter and single-channel InGaAs SBD detector, (b) measured THz pulse spectrum of the THz-TDS emitter, with the inset showing the results on a logarithmic scale, and (c) photograph of a medical knife and its THz images measured by using the THz pulse imaging system.

Fig. 4
Fig. 4

(a) SBD array chip bonded onto an SBD-CB and a cylindrical Si lens placed on the SBD array chip and (b) transmitted IR image of the SBD array chip bonded onto the SBD-CB obtained by using an IR camera.

Fig. 5
Fig. 5

THz signal detected by a single-channel SBD as a function of the number of transparent tapes with the parameters of the transparent tape only and a cylindrical Si lens with four pieces of overlapped transparent tape.

Fig. 6
Fig. 6

THz radiation beam patterns of the Gunn diode emitter measured by using (a) all the channels and (b) only channel 10 of a 1 × 20 SBD array detector.

Fig. 7
Fig. 7

(a) THz CW imaging measurement setup, (b) photograph of a metal ring and clip, and their THz images measured by using the THz CW imaging system with (c) all the channels and (d) only channel 10 of the 1 × 20 SBD array detector.

Metrics