Abstract

We report the formation of surface self-written waveguides by means of surface pyrolitons in lithium niobate. By a specific orientation of the crystal axis the quasi-local slow photorefractive response of lithium niobate was used to induce a self-confined beam exactly at the crystal-air interface. The mode profile of the photo-induced waveguide is strongly asymmetric due to the interface presence.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
    [CrossRef]
  2. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
    [CrossRef]
  3. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
    [CrossRef] [PubMed]
  4. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993).
    [CrossRef] [PubMed]
  5. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21(1), 24–26 (1996).
    [CrossRef] [PubMed]
  6. T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
    [CrossRef]
  7. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
    [CrossRef]
  8. M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(13), 931–934 (1996).
    [CrossRef] [PubMed]
  9. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
    [CrossRef]
  10. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).
  11. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
    [CrossRef] [PubMed]
  12. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
    [CrossRef]
  13. K. K. Wong, ed., Properties of Lithium Niobate, EMIS Datareviews Series No. 28 (INSPEC, London, UK, 2002).
  14. V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
    [CrossRef]
  15. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
    [CrossRef]
  16. S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).
  17. M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).
  18. T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).
  19. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express17(24), 22209–22216 (2009).
    [CrossRef] [PubMed]
  20. J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
    [CrossRef] [PubMed]
  21. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
    [CrossRef] [PubMed]
  22. G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
    [CrossRef] [PubMed]
  23. V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
    [CrossRef]
  24. V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).
  25. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).
  26. S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
    [CrossRef]
  27. H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
    [CrossRef] [PubMed]
  28. B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
    [CrossRef]
  29. I. I. Smolyaninov and C. C. Davis, “Near-field optical study of photorefractive surface waves in BaTiO3,” Opt. Lett.24(19), 1367–1369 (1999).
    [CrossRef] [PubMed]
  30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
    [CrossRef]
  31. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
    [CrossRef] [PubMed]
  32. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).
  33. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
    [CrossRef] [PubMed]
  34. E. Fazio, A. Petris, M. Bertolotti, and V. I. Vlad, “Optical bright solitons in lithium niobate and their applications,” in press on Rom. Rep. Phys. (September 2013).
  35. S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
    [CrossRef]
  36. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B25(6), 1081–1086 (2008).
    [CrossRef]

2013

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

2012

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

2011

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

2010

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

2009

2008

2007

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

2006

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

2005

2004

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

2001

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

1999

1996

1995

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
[CrossRef] [PubMed]

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

1993

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993).
[CrossRef] [PubMed]

1992

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

1985

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

1978

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

1964

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Akhmedzhanov, I. M.

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

Aleshkevich, V.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

Alfassi, B.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Aoki, S.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Ballandras, S.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

Ballmann, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Bertolotti, M.

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Bogodaev, N. V.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Bosco, A.

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Chauvet, M.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express17(24), 22209–22216 (2009).
[CrossRef] [PubMed]

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B25(6), 1081–1086 (2008).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Chetkin, S. A.

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Christodoulides, D. N.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Coda, V.

Cronin-Golomb, M.

Crosignani, B.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Davis, C. C.

Devaux, F.

Duree, G. C.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Egorov, A.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

Fares, L. A.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

Fazio, E.

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Feng, L.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Fiumara, T.

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

Frisken, S. J.

Froehly, C.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Garcia Quirino, G. S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Guichardaz, B.

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

Hu, Z. J.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Inao, M.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Ishitsuka, T.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

Ivleva, L. I.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

Kang, H. Z.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Kartashov, Y.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

Kewitsch, A. S.

Klotz, M.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Levinstein, H. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Liu, S. M.

Lou, C. B.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Lykov, P. A.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Ma, H. H.

Maillotte, H.

Manela, O.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Maneuf, S.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Meng, H.

Montgomery, S. R.

Motoyoshi, K.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Nurligareev, D. K.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Passier, R.

Petris, A.

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Pettazzi, F.

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

Popescu, S. T.

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

Porto, P. D.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Ren, X. K.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Roman, J.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Rotschild, C.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Safioui, J.

Salamo, G.

Salamo, G. J.

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Sanchez-Mondragon, J. J.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Segev, M.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
[CrossRef] [PubMed]

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(13), 931–934 (1996).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Shao, W. W.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Shih, M. F.

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Smolyaninov, I. I.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Sotoyama, W.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Stepanov, S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Sychugov, V. A.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Takahashi, Y.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Tian, J. G.

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

Tsukamoto, K.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Usievich, B. A.

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Vlad, V. I.

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Vysloukh, V.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

Wang, B. H.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Wang, W.-C. V.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Xu, J. J.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Xu, Y. H.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

Yang, D. P.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Yang, J.

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Yariv, A.

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21(1), 24–26 (1996).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Yoshimura, T.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Zhang, T. H.

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Zhu, B. G.

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Appl. Phys. B

S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012).
[CrossRef]

Appl. Phys. Lett.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Electron. Lett.

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

IEEE Trans Comp. Pack. Technol.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001).
[CrossRef]

Integrated optofluidic index sensor based on self-trapped beams in LiNbO3

M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).

J. Opt.

T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).

J. Opt. A, Pure Appl. Opt.

V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Optoelectron. Adv. Mater.

S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).

Nonlocal surface-wave solitons

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).

Opt. Commun.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
[CrossRef] [PubMed]

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009).
[CrossRef] [PubMed]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov and C. C. Davis, “Near-field optical study of photorefractive surface waves in BaTiO3,” Opt. Lett.24(19), 1367–1369 (1999).
[CrossRef] [PubMed]

S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993).
[CrossRef] [PubMed]

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21(1), 24–26 (1996).
[CrossRef] [PubMed]

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(13), 931–934 (1996).
[CrossRef] [PubMed]

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
[CrossRef] [PubMed]

Opt. Quantum Electron.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001).
[CrossRef]

Phys. Rev. A

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992).
[CrossRef] [PubMed]

Quantum Electron.

S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011).
[CrossRef]

B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010).
[CrossRef]

Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).

Surface waves with photorefractive nonlinearity

T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).

Other

E. Fazio, A. Petris, M. Bertolotti, and V. I. Vlad, “Optical bright solitons in lithium niobate and their applications,” in press on Rom. Rep. Phys. (September 2013).

K. K. Wong, ed., Properties of Lithium Niobate, EMIS Datareviews Series No. 28 (INSPEC, London, UK, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics