Abstract

Photonic crystal (PhC) structures with polarized-wave-guiding property (PhC polarization waveguides) are proposed, demonstrated and applied to construct several new kinds of compact and efficient micro polarization devices in the mid and far infrared wave bands, including TE polarizers, TM polarizers, TE-downward T-shaped polarization-beam splitters (PBSs), TM-downward T-shaped PBSs and lying-T-shaped PBSs. Theoretical models for the operating mechanism of the structures are presented. The polarization devices built as applications of the PhC polarization waveguides are demonstrated by the finite-element method with the dispersion of materials being considered. Furthermore, optimized parameters are obtained by investigating the extinction ratio (EXR), the degree of polarization (DOP) and insertion loss. Moreover, structures based on PhC slabs derived from the 2D ones, together with woodpile PhC covers and substrates are suggested for the 3D version of the proposed devices for implementation. An example of the 3D-version structures shows a performance as good as that of the 2D structure. The devices proposed have relatively wide ranges of operating wavelength. Meanwhile, they are very compact in their structures and convenient for connection or coupling of signals among different optical elements, so they have the potential for wide applications in mid-and-far infrared optical devices or circuits, which are useful in remote sensing, image and vision, positioning and communications with infrared waves. Furthermore, the principle can be applied to build polarizers and PBSs in other wave bands.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett.10(1), 170–173 (2013).
    [CrossRef]
  2. Z. Chen, X. Wang, M. Zhang, R. Xia, and W. Jin, “Study of atmospheric effects on infrared polarization imaging system based on polarized Monte Carlo method,” Proc. SPIE.8512, 85120H1–14 (2012).
    [CrossRef]
  3. P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011).
    [CrossRef] [PubMed]
  4. P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
    [CrossRef]
  5. Q. Liu, Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express16(23), 18992–19000 (2008).
    [CrossRef] [PubMed]
  6. A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007).
    [CrossRef]
  7. V. Ivanovski and V. M. Petruevski, “Infrared reflectance spectra of some optically biaxial crystals: On the origin of isosbestic-like points in the polarized reflectance spectra,” Spectrochimica Acta - Part A: Mol. and Biomol. Spectr.61(9), 2057–2063 (2005).
    [CrossRef]
  8. Y. Takano and K. N. Liou, “Transfer of polarized infrared radiation in optically anisotropic media: Application to horizontally oriented ice crystals,” J. Opt. Soc. Am. A10(6), 1243–1256 (1993).
    [CrossRef]
  9. W. G. Egan and M. J. Duggin, “Optical enhancement of aircraft detection using polarization,” Proc. SPIE4133, 172–178 (2000).
    [CrossRef]
  10. J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012).
    [CrossRef]
  11. D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
    [CrossRef]
  12. D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE6233, 62331Q (2006).
    [CrossRef]
  13. P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
    [CrossRef] [PubMed]
  14. N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
    [CrossRef]
  15. A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
    [CrossRef]
  16. N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
    [CrossRef]
  17. D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
    [CrossRef]
  18. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express13(19), 7699–7707 (2005).
    [CrossRef] [PubMed]
  19. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road From Theory to Practice (Springer, 2001).
  20. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  21. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  22. J. Wang and M. H. Qi, “Design of a compact mode and polarization converter in three-dimensional photonic crystals,” Opt. Express20(18), 20356–20367 (2012).
    [CrossRef] [PubMed]
  23. B. Chen, L. Huang, Y. D. Li, C. L. Liu, and G. Z. Liu, “Compact wavelength splitter based on self-imaging principles in Bragg reflection waveguides,” Appl. Opt.51(29), 7124–7129 (2012).
    [CrossRef] [PubMed]
  24. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett.31(21), 3104–3106 (2006).
    [CrossRef] [PubMed]
  25. J. Cai, G. P. Nordin, S. Kim, and J. Jiang, “Three-dimensional analysis of a hybrid photonic crystal-conventional waveguide 90 degree bend,” Appl. Opt.43(21), 4244–4249 (2004).
    [CrossRef] [PubMed]
  26. J. Jiang, J. Cai, G. P. Nordin, and L. Li, “Parallel microgenetic algorithm design for photonic crystal and waveguide structures,” Opt. Lett.28(23), 2381–2383 (2003).
    [CrossRef] [PubMed]
  27. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “High-efficiency polarization beam splitter based on a self-collimating photonic crystal,” J. Opt. Soc. Am. B27(11), 2247–2254 (2010).
    [CrossRef]
  28. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett.32(5), 530–532 (2007).
    [CrossRef] [PubMed]
  29. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett.28(23), 2384–2386 (2003).
    [CrossRef] [PubMed]
  30. W. Zheng, M. Xing, G. Ren, S. G. Johnson, W. Zhou, W. Chen, and L. Chen, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express17(10), 8657–8668 (2009).
    [CrossRef] [PubMed]
  31. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
    [CrossRef]
  32. Y. R. Zhen and L. M. Li, “A novel application of two-dimensional photonic crystals: polarization beam splitter,” J. Phys. D Appl. Phys.38(18), 3391–3394 (2005).
    [CrossRef]
  33. J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev.93(4), 707–716 (1954).
    [CrossRef]
  34. P. A. Hartig and J. J. Loferski, “Infrared index of refraction of tellurium crystals,” J. Opt. Soc. Am.44(1), 17–18 (1954).
    [CrossRef]
  35. M. Bass, Handbook of Optics, 2nd edition, Vol. 2. New York: McGraw-Hill. (OSA, 1994). Chap. 33.
  36. P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express18(5), 5221–5228 (2010).
    [CrossRef] [PubMed]
  37. B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009).
    [CrossRef]
  38. R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express16(19), 14812–14820 (2008).
    [CrossRef] [PubMed]
  39. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
    [CrossRef] [PubMed]
  40. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
    [CrossRef]
  41. R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009).
  42. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express13(18), 7145–7159 (2005).
    [CrossRef] [PubMed]
  43. Y. Xu, S. Wang, S. Lan, X. S. Lin, Q. Guo, and L. J. Wu, “Self-collimating polarization beam splitter based on photonic crystal Mach?Zehnder interferometer,” J. Opt. Soc. Am. B27(7), 1359–1363 (2010).
    [CrossRef]
  44. D. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express12(9), 1823–1831 (2004).
    [CrossRef] [PubMed]
  45. L. Shawn-Yu and J. G. Fleming, “A three-dimensional optical photonic crystal,” J. Lightwave Technol.17(11), 1944–1947 (1999).
    [CrossRef]
  46. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
    [CrossRef]

2013

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett.10(1), 170–173 (2013).
[CrossRef]

2012

J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012).
[CrossRef]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
[CrossRef]

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

J. Wang and M. H. Qi, “Design of a compact mode and polarization converter in three-dimensional photonic crystals,” Opt. Express20(18), 20356–20367 (2012).
[CrossRef] [PubMed]

B. Chen, L. Huang, Y. D. Li, C. L. Liu, and G. Z. Liu, “Compact wavelength splitter based on self-imaging principles in Bragg reflection waveguides,” Appl. Opt.51(29), 7124–7129 (2012).
[CrossRef] [PubMed]

2011

P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011).
[CrossRef] [PubMed]

2010

2009

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009).
[CrossRef]

W. Zheng, M. Xing, G. Ren, S. G. Johnson, W. Zhou, W. Chen, and L. Chen, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express17(10), 8657–8668 (2009).
[CrossRef] [PubMed]

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
[CrossRef]

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

2008

2007

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett.32(5), 530–532 (2007).
[CrossRef] [PubMed]

A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007).
[CrossRef]

2006

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE6233, 62331Q (2006).
[CrossRef]

E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett.31(21), 3104–3106 (2006).
[CrossRef] [PubMed]

2005

V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express13(19), 7699–7707 (2005).
[CrossRef] [PubMed]

V. Ivanovski and V. M. Petruevski, “Infrared reflectance spectra of some optically biaxial crystals: On the origin of isosbestic-like points in the polarized reflectance spectra,” Spectrochimica Acta - Part A: Mol. and Biomol. Spectr.61(9), 2057–2063 (2005).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express13(18), 7145–7159 (2005).
[CrossRef] [PubMed]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Y. R. Zhen and L. M. Li, “A novel application of two-dimensional photonic crystals: polarization beam splitter,” J. Phys. D Appl. Phys.38(18), 3391–3394 (2005).
[CrossRef]

2004

2003

2000

W. G. Egan and M. J. Duggin, “Optical enhancement of aircraft detection using polarization,” Proc. SPIE4133, 172–178 (2000).
[CrossRef]

1999

1998

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

1993

1987

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1954

J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev.93(4), 707–716 (1954).
[CrossRef]

P. A. Hartig and J. J. Loferski, “Infrared index of refraction of tellurium crystals,” J. Opt. Soc. Am.44(1), 17–18 (1954).
[CrossRef]

Andersson, M. R.

A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007).
[CrossRef]

Athanasiou, A.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Bellou, P.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Breton, M.

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Cai, J.

Castle, K. R.

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE6233, 62331Q (2006).
[CrossRef]

Cavanaugh, D. B.

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE6233, 62331Q (2006).
[CrossRef]

Chen, B.

Chen, C.

Chen, J.

J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012).
[CrossRef]

Chen, L.

Chen, W.

Chenault, D. B.

P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
[CrossRef]

Clarke, E.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

Coles, R. J.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

Cui, N.

N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
[CrossRef]

Czarnik-Matusewicz, B.

P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011).
[CrossRef] [PubMed]

Dardano, P.

Davenport, W.

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE6233, 62331Q (2006).
[CrossRef]

Di Falco, A.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

Duggin, M. J.

W. G. Egan and M. J. Duggin, “Optical enhancement of aircraft detection using polarization,” Proc. SPIE4133, 172–178 (2000).
[CrossRef]

Dunbar, L. A.

Egan, W. G.

W. G. Egan and M. J. Duggin, “Optical enhancement of aircraft detection using polarization,” Proc. SPIE4133, 172–178 (2000).
[CrossRef]

Erbach, P. S.

P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
[CrossRef]

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Fathollahi Khalkhali, T.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009).
[CrossRef]

Fatsea, T.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Fleming, J. G.

L. Shawn-Yu and J. G. Fleming, “A three-dimensional optical photonic crystal,” J. Lightwave Technol.17(11), 1944–1947 (1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Fournier, G.

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
[CrossRef]

Fox, A. M.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

Gadisa, A.

A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007).
[CrossRef]

Goldstein, D. H.

P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
[CrossRef]

Guo, Q.

Hartig, P. A.

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Houdré, R.

Huang, K.

Huang, L.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Inganas, O.

A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007).
[CrossRef]

Iordanou, P.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Ivanovski, V.

V. Ivanovski and V. M. Petruevski, “Infrared reflectance spectra of some optically biaxial crystals: On the origin of isosbestic-like points in the polarized reflectance spectra,” Spectrochimica Acta - Part A: Mol. and Biomol. Spectr.61(9), 2057–2063 (2005).
[CrossRef]

Jacobs, S.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
[CrossRef]

Ji, Y. F.

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Jiang, J.

Joannopoulos, J. D.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express13(18), 7145–7159 (2005).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kalafi, M.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009).
[CrossRef]

Kang, X. L.

Karalis, A.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
[CrossRef]

Kawaguchi, S.

Kawata, S.

Kim, S.

Koniaris, E.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Kotlyar, M. V.

Krauss, T. F.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett.32(5), 530–532 (2007).
[CrossRef] [PubMed]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Lan, S.

Lavigne, D. A.

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
[CrossRef]

Le Thomas, N.

Lee, M. H.

Lee, S. G.

Li, L.

Li, L. M.

Y. R. Zhen and L. M. Li, “A novel application of two-dimensional photonic crystals: polarization beam splitter,” J. Phys. D Appl. Phys.38(18), 3391–3394 (2005).
[CrossRef]

Li, Y. D.

Li, Y. P.

Liang, J.

N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
[CrossRef]

Liang, Z.

N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Lin, X. S.

Liou, K. N.

Liu, C. L.

Liu, C. P.

Liu, G. Z.

Liu, Q.

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Loferski, J. J.

J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev.93(4), 707–716 (1954).
[CrossRef]

P. A. Hartig and J. J. Loferski, “Infrared index of refraction of tellurium crystals,” J. Opt. Soc. Am.44(1), 17–18 (1954).
[CrossRef]

Lowry, H. S.

P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
[CrossRef]

Luxmoore, I. J.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

Lykoudis, E. G.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Majewska, P.

P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011).
[CrossRef] [PubMed]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Massari, M.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

Mocella, V.

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Moretti, L.

Ning, Y.

N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
[CrossRef]

Nordin, G. P.

O’Faolain, L.

Ouyang, Z.

Papaevangelou, M.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Park, H. R.

Park, J. M.

Park, W.

Perzon, E.

A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007).
[CrossRef]

Petruevski, V. M.

V. Ivanovski and V. M. Petruevski, “Infrared reflectance spectra of some optically biaxial crystals: On the origin of isosbestic-like points in the polarized reflectance spectra,” Spectrochimica Acta - Part A: Mol. and Biomol. Spectr.61(9), 2057–2063 (2005).
[CrossRef]

Pezzaniti, J. L.

P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
[CrossRef]

Pichette, M.

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
[CrossRef]

Povinelli, M. L.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express13(18), 7145–7159 (2005).
[CrossRef] [PubMed]

Prather, D.

Proietti Zaccaria, R.

Pustai, D.

Qi, M. H.

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Reinhardt, J.

P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
[CrossRef]

Ren, G.

Rendina, I.

Rezaei, B.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009).
[CrossRef]

Rivet, V.

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
[CrossRef]

Romanato, F.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

Rospenk, M.

P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011).
[CrossRef] [PubMed]

Schonbrun, E.

Schulz, S. A.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

Scullion, M. G.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

Sharkawy, A.

Shawn-Yu, L.

Shi, P.

Shi, S.

Shoji, S.

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Skolnick, M. S.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Sobczyk, L.

P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011).
[CrossRef] [PubMed]

Soljacic, M.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
[CrossRef]

Soltani Vala, A.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009).
[CrossRef]

Summers, C. J.

Sun, Z.

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett.10(1), 170–173 (2013).
[CrossRef]

Takano, Y.

Tian, H. P.

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Verma, P.

Wang, J.

Wang, J. C.

Wang, S.

Wang, W.

N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
[CrossRef]

Wasley, N. A.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

Wu, C. J.

Wu, L. J.

Wu, Q.

Xing, M.

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamashita, T.

Yang, D. Q.

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Zabelin, V.

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Zhang, J.

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett.10(1), 170–173 (2013).
[CrossRef]

J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012).
[CrossRef]

Zhang, Y.

J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012).
[CrossRef]

Zhao, Y.

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett.10(1), 170–173 (2013).
[CrossRef]

Zhen, Y. R.

Y. R. Zhen and L. M. Li, “A novel application of two-dimensional photonic crystals: polarization beam splitter,” J. Phys. D Appl. Phys.38(18), 3391–3394 (2005).
[CrossRef]

Zheng, W.

Zhou, W.

Zou, B.

J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005).
[CrossRef]

Appl. Phys. Lett.

A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007).
[CrossRef]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012).
[CrossRef]

IEEE Geosci. Remote Sens. Lett.

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett.10(1), 170–173 (2013).
[CrossRef]

IEEE Photon. J.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens.

J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. B

P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys.

Y. R. Zhen and L. M. Li, “A novel application of two-dimensional photonic crystals: polarization beam splitter,” J. Phys. D Appl. Phys.38(18), 3391–3394 (2005).
[CrossRef]

Nature

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Opt. Commun.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009).
[CrossRef]

N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012).
[CrossRef]

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Opt. Express

V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express13(19), 7699–7707 (2005).
[CrossRef] [PubMed]

Q. Liu, Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express16(23), 18992–19000 (2008).
[CrossRef] [PubMed]

R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express16(19), 14812–14820 (2008).
[CrossRef] [PubMed]

J. Wang and M. H. Qi, “Design of a compact mode and polarization converter in three-dimensional photonic crystals,” Opt. Express20(18), 20356–20367 (2012).
[CrossRef] [PubMed]

W. Zheng, M. Xing, G. Ren, S. G. Johnson, W. Zhou, W. Chen, and L. Chen, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express17(10), 8657–8668 (2009).
[CrossRef] [PubMed]

D. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express12(9), 1823–1831 (2004).
[CrossRef] [PubMed]

P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express18(5), 5221–5228 (2010).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express13(18), 7145–7159 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Photomed. Laser Surg.

P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009).
[CrossRef] [PubMed]

Phys. Rev.

J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev.93(4), 707–716 (1954).
[CrossRef]

Phys. Rev. Lett.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Proc. SPIE

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009).
[CrossRef]

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE6233, 62331Q (2006).
[CrossRef]

P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010).
[CrossRef]

W. G. Egan and M. J. Duggin, “Optical enhancement of aircraft detection using polarization,” Proc. SPIE4133, 172–178 (2000).
[CrossRef]

Spectrochimica Acta - Part A: Mol. and Biomol. Spectr.

V. Ivanovski and V. M. Petruevski, “Infrared reflectance spectra of some optically biaxial crystals: On the origin of isosbestic-like points in the polarized reflectance spectra,” Spectrochimica Acta - Part A: Mol. and Biomol. Spectr.61(9), 2057–2063 (2005).
[CrossRef]

Other

Z. Chen, X. Wang, M. Zhang, R. Xia, and W. Jin, “Study of atmospheric effects on infrared polarization imaging system based on polarized Monte Carlo method,” Proc. SPIE.8512, 85120H1–14 (2012).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road From Theory to Practice (Springer, 2001).

M. Bass, Handbook of Optics, 2nd edition, Vol. 2. New York: McGraw-Hill. (OSA, 1994). Chap. 33.

R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

The structures of a TE PWG (a) and a TM PWG (b).

Fig. 2
Fig. 2

Basic structures for a TE polarizer (a), a TM polarizer (b), the TE-downward T-shaped PBS (c), the TM-downward T-shaped PBS (d), and the lying T-shaped PBS (e). All the inputs in (a) to (e) are set at the left-hand sides.

Fig. 3
Fig. 3

Bandgap map versus radius in the Tellurium PhC. The blue, red and yellow regions stand for the TE, TM and absolute bandgaps, respectively. (b) is an enlarged view of (a) near r/a = 0.3431, where the widest absolute bandgap exists.

Fig. 4
Fig. 4

The band map of the Tellurium PhC at the irreducible Brillion zone for rB = 0.3431a. Convention for the colored lines and regions is: pale blue – TE bandgap, pale red – TM bandgap, yellow – absolute bandgap, blue line – TE modes, red line – TM modes.

Fig. 5
Fig. 5

The guiding modes in the bandgap (a) and the linear dispersion region (b). Blue lines describe the TE band, red lines define the TM band, and the yellow region is the absolute bandgap.

Fig. 6
Fig. 6

The guided modes in the TE PWGS with a defect of square rods (a) and the guided modes in the TM PWGS with a defect of small-radius circular rods (b). The blue and red lines in the yellow region are respectively the guided TE and TM modes.

Fig. 7
Fig. 7

The EXR and the DOP versus s and rd for the TE-output wave in the TE polarizer (marked with four squares) (a) and for the TM-output wave in the TM polarizer (marked with three circulars) (b). The red and blue lines indicate the EXR and DOP, respectively.

Fig. 8
Fig. 8

Insertion loss for the TE polarizer for TE input (a) and TM polarizer for TM input (b). In (a), all the insertion losses are lower than 0.3dB within the wavelength range of 3.929a to 4.158a; while in (b), the insertion loss is less than 0.17 dB in the range of Eq. (7).

Fig. 9
Fig. 9

Field distributions of Ez (a) and Hz (b) for TE and TM inputs respectively in the TE polarizer, as well as Hz (c) and Ez (d) and for TM and TE inputs respectively in the TM polarizer.

Fig. 10
Fig. 10

The EXRs (a), (c), (e) and the DOPs (b), (d), (f) versus the operating wavelength for the TE-downward, TM-downward and lying T-shaped PBSs, respectively.

Fig. 11
Fig. 11

(a), (b) and (c) are the insertion losses versus the operating wavelengths for the TE-downward, TM-downward and lying T-shaped PBSs, respectively.

Fig. 12
Fig. 12

The field distributions Ez for an incident of TE wave in (a), (c) and (e); Hz for that of TM wave in (b), (d) and (f). Sub-figure groups (a)-(b), (c)-(d), and (e)-(f) stand for the TE-downward, TM-downward and lying T-shaped PBS, respectively.

Fig. 13
Fig. 13

An example of the 3D deployment of devices proposed: the PhC-slab form of the TE-downward T-shaped PBS with a substrate and a cover of a woodpile PhC in one period. The left part (a) is the overview of the whole device. Part (b) is the device with the cover removed away for a clear inside view. Part (c) is the side-sectional view.

Fig. 14
Fig. 14

The bandgap map of the woodpile PhC made of PbTe (a) and the band map of the woodpile PhC at W/a = 0.2618. Here, W is the width of the logs constituting the woodpile and a is the lattice constant of the woodpile PhC.

Fig. 15
Fig. 15

The related output power transmitted over the 3D structure consisting of a PhC slab with 3x3 Tellurium rods as well as a cover and a substrate of one period of woodpile PhC for various heights (2a to 5.12a) of the PhC slab (a) and that for three optimum values (2.78a, 3.04a, 3.3a) of the height of the PhC slab (b).

Fig. 16
Fig. 16

The field distribution Ez (a) for an input of TE wave and Hz (b) for that of a TM wave in the 3D TE-downward T-shaped PBS.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

n e = [ 29.5222+9.3068 λ 2 ( λ 2 2.5766 ) 1 +9.2350 λ 2 ( λ 2 13521 ) 1 ] 1/2 ,
n o = [ 18.5346+4.3289 λ 2 ( λ 2 3.9810 ) 1 +3.7800 λ 2 ( λ 2 11813 ) 1 ] 1/2 ,
f= ( 2πc ) 1 ωa=a/λ=0.222~0.260.
λ=3.846a~4.505a.
f= ( 2πc ) 1 ωa=a/λ=0.2368~0.2569.
  f center =0.2469.
λ=3.893a~4.223a.
λ center =4.050a.
r ext TE =10× log 10 ( I TE / I TM ),
r ext TM =10× log 10 ( I TM / I TE ),
ρ p TE =| ( I TE / I TM 1 )/( I TE / I TM +1 ) |,
ρ p TM =| ( I TM / I TE 1 )/( I TM / I TE +1 ) |,
InsertionLoss( dB )=10× log 10 ( P in / P out ).
0.5273as0.5553a,
0.1108a r d 0.2090a.
s opt =0.538a,
r d, opt =0.165a.
3.929aλ4.158afor the TE polarizer,
3.893aλ4.222afor the TM polarizer.
λ opt =3.931a~3.993a,3.998a~4.223a.
λ opt =4.035a~4.087a,4.095a~4.223a,
λ opt =4.044a~4.223a,

Metrics