Abstract

The polarization state of an ultrafast laser is dynamically controlled using two Spatial Light Modulators and additional waveplates. Consequently, four states of polarization, linear horizontal and vertical, radial and azimuthal, all with a ring intensity distribution, were dynamically switched at a frequency ν = 12.5Hz while synchronized with a motion control system. This technique, demonstrated here for the first time, enables a remarkable level of real-time control of the properties of light waves and applied to real-time surface patterning, shows that highly controlled nanostructuring is possible. Laser ablation of Induced Periodic Surface Structures is used to directly verify the state of polarization at the focal plane.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, Inc., New York, 1975), Chap. 2.
  2. H. Kleinpoppen, Constituents of Matter, Atoms, Molecules, Nuclei and Particles, p142, Ed. Bergmann/Schaefer, Copyright Walter de Gruyer, Berlin, New York (1997), Berlin, Germany.
  3. J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
    [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic press, Burlington MA, Elsevier, 2008), Chap. 4.
  5. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett.20(1), 73–75 (1995).
    [CrossRef] [PubMed]
  6. N. A. Panov, V. A. Makarov, V. Y. Fedorov, and O. G. Kosareva, “Filamentation of arbitrary polarized femtosecond laser pulses in case of high-order Kerr effect,” Opt. Lett.38(4), 537–539 (2013).
    [CrossRef] [PubMed]
  7. L. Ye, Laser Group, School of Engineering, University of Liverpool, L69 3GQ, UK, W. Perrie, O. Allegre, Y. Jin, Z. Kuang, P. Scully, E. Fearon, D. Eckford, S. Edwardson, and G. Dearden are preparing a manuscript to be called “NUV femtosecond laser inscription of volume Bragg gratings in poly (methyl) methacrylate with linear and circular polarizations”.
  8. R. A. Fox, R. M. Kogan, and E. J. Robinson, “Laser Triple-Quantum Photoionization of Cesium,” Phys. Rev. Lett.26(23), 1416–1417 (1971).
    [CrossRef]
  9. R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).
  10. H. S. Carman and R. N. Compton, “High-order multiphoton ionization photoelectron spectroscopy of nitric oxide,” J. Chem. Phys.90(3), 1307 (1989).
    [CrossRef]
  11. D. D. Venable and R. B. Kay, “Polarization effects in four-photon conductivity in quartz,” Appl. Phys. Lett.27(1), 48–49 (1975).
    [CrossRef]
  12. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
    [CrossRef] [PubMed]
  13. H. R. Reiss, “Polarization Effects in High-Order Multiphoton Ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
    [CrossRef]
  14. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
    [CrossRef]
  15. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  16. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26(10), 5366–5381 (1982).
    [CrossRef]
  17. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32(13), 1932–1934 (2007).
    [CrossRef] [PubMed]
  18. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011).
    [CrossRef] [PubMed]
  19. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
    [CrossRef]
  20. C. Föhl, D. Breitling, and F. Dausinger, “Precise drilling of steel with ultrashort plused solid-state lasers,” Proc. SPIE5121, 271–279 (2003).
    [CrossRef]
  21. S. Hahne, B. F. Johnston, and M. J. Withford, “Pulse-to-pulse polarization-switching method for high-repetition-rate lasers,” Appl. Opt.46(6), 954–958 (2007).
    [CrossRef] [PubMed]
  22. O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
    [CrossRef]
  23. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
    [CrossRef]
  24. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express14(7), 2650–2656 (2006).
    [CrossRef] [PubMed]
  25. O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express21(18), 21198–21207 (2013).
    [CrossRef]
  26. S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing by use of a spatial light modulator,” Proc. SPIE6458, 645815 (2007).
    [CrossRef]
  27. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008).
    [CrossRef] [PubMed]
  28. S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express21(11), 12987–12995 (2013).
    [CrossRef] [PubMed]
  29. J. Zhang, M. Gecevicius, M. Beresna, and P. G. Kazansky, “5D Data Storage by Ultrafast Laser Nanostructuring in Glass”, in Conference on Lasers and Electro-Optics, Technical Digest (online) (Optical Society of America, 2013), paper CTh5D. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTh5D.9
    [CrossRef]
  30. P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
    [CrossRef]
  31. U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
    [CrossRef]
  32. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012).
    [CrossRef] [PubMed]

2013 (3)

2012 (3)

K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012).
[CrossRef] [PubMed]

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

2011 (2)

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011).
[CrossRef] [PubMed]

2010 (1)

U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
[CrossRef]

2008 (1)

2007 (4)

S. Hahne, B. F. Johnston, and M. J. Withford, “Pulse-to-pulse polarization-switching method for high-repetition-rate lasers,” Appl. Opt.46(6), 954–958 (2007).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing by use of a spatial light modulator,” Proc. SPIE6458, 645815 (2007).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32(13), 1932–1934 (2007).
[CrossRef] [PubMed]

2006 (2)

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express14(7), 2650–2656 (2006).
[CrossRef] [PubMed]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

2003 (3)

C. Föhl, D. Breitling, and F. Dausinger, “Precise drilling of steel with ultrashort plused solid-state lasers,” Proc. SPIE5121, 271–279 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

1999 (1)

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

1995 (1)

1989 (1)

H. S. Carman and R. N. Compton, “High-order multiphoton ionization photoelectron spectroscopy of nitric oxide,” J. Chem. Phys.90(3), 1307 (1989).
[CrossRef]

1982 (1)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26(10), 5366–5381 (1982).
[CrossRef]

1975 (1)

D. D. Venable and R. B. Kay, “Polarization effects in four-photon conductivity in quartz,” Appl. Phys. Lett.27(1), 48–49 (1975).
[CrossRef]

1972 (1)

H. R. Reiss, “Polarization Effects in High-Order Multiphoton Ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
[CrossRef]

1971 (2)

R. A. Fox, R. M. Kogan, and E. J. Robinson, “Laser Triple-Quantum Photoionization of Cesium,” Phys. Rev. Lett.26(23), 1416–1417 (1971).
[CrossRef]

R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).

Allegre, O. J.

O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express21(18), 21198–21207 (2013).
[CrossRef]

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Audouard, E.

Baset, F.

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

Bauchert, K.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

Beresna, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Beversluis, M. R.

Bhardwaj, V. R.

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Braun, A.

Breitling, D.

C. Föhl, D. Breitling, and F. Dausinger, “Precise drilling of steel with ultrashort plused solid-state lasers,” Proc. SPIE5121, 271–279 (2003).
[CrossRef]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Burnham, G. T.

R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).

Carman, H. S.

H. S. Carman and R. N. Compton, “High-order multiphoton ionization photoelectron spectroscopy of nitric oxide,” J. Chem. Phys.90(3), 1307 (1989).
[CrossRef]

Compton, R. N.

H. S. Carman and R. N. Compton, “High-order multiphoton ionization photoelectron spectroscopy of nitric oxide,” J. Chem. Phys.90(3), 1307 (1989).
[CrossRef]

Coyne, E.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Dausinger, F.

C. Föhl, D. Breitling, and F. Dausinger, “Precise drilling of steel with ultrashort plused solid-state lasers,” Proc. SPIE5121, 271–279 (2003).
[CrossRef]

Dearden, G.

O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express21(18), 21198–21207 (2013).
[CrossRef]

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

Du, D.

Dusing, J. F.

U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
[CrossRef]

Edwardson, S. P.

O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express21(18), 21198–21207 (2013).
[CrossRef]

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Fallnich, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

Fauchet, P. M.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26(10), 5366–5381 (1982).
[CrossRef]

Fearon, E.

Fedorov, V. Y.

Föhl, C.

C. Föhl, D. Breitling, and F. Dausinger, “Precise drilling of steel with ultrashort plused solid-state lasers,” Proc. SPIE5121, 271–279 (2003).
[CrossRef]

Fox, R. A.

R. A. Fox, R. M. Kogan, and E. J. Robinson, “Laser Triple-Quantum Photoionization of Cesium,” Phys. Rev. Lett.26(23), 1416–1417 (1971).
[CrossRef]

R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).

Gecevicius, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gu, B.

Guay, J. M.

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26(10), 5366–5381 (1982).
[CrossRef]

Hahne, S.

Hasegawa, S.

S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express21(11), 12987–12995 (2013).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing by use of a spatial light modulator,” Proc. SPIE6458, 645815 (2007).
[CrossRef]

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express21(11), 12987–12995 (2013).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing by use of a spatial light modulator,” Proc. SPIE6458, 645815 (2007).
[CrossRef]

Hirao, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011).
[CrossRef] [PubMed]

Huot, N.

Jin, Y.

Johnston, B. F.

Kamlage, G.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

Kay, R. B.

D. D. Venable and R. B. Kay, “Polarization effects in four-photon conductivity in quartz,” Appl. Phys. Lett.27(1), 48–49 (1975).
[CrossRef]

Kazansky, P. G.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Kling, R.

U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
[CrossRef]

Klug, U.

U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
[CrossRef]

Kogan, R. M.

R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).

R. A. Fox, R. M. Kogan, and E. J. Robinson, “Laser Triple-Quantum Photoionization of Cesium,” Phys. Rev. Lett.26(23), 1416–1417 (1971).
[CrossRef]

Korn, G.

Kosareva, O. G.

Krolikowski, W.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011).
[CrossRef] [PubMed]

Li, Y.

Liu, D.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

Liu, X.

Lou, K.

Magee, J.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Makarov, V. A.

Malzer, S.

Mannion, P.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Mauclair, C.

Mermillod-Blondin, A.

Miura, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Momma, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

Mourou, G.

Nolte, S.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

Novotny, L.

O’Connor, G. M.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Ostendorf, A.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

Ouyang, J.

Panov, N. A.

Perrie, W.

O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express21(18), 21198–21207 (2013).
[CrossRef]

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

Popov, K.

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

Qian, S. X.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Ramunno, L.

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

Reiss, H. R.

H. R. Reiss, “Polarization Effects in High-Order Multiphoton Ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
[CrossRef]

Robinson, E. J.

R. A. Fox, R. M. Kogan, and E. J. Robinson, “Laser Triple-Quantum Photoionization of Cesium,” Phys. Rev. Lett.26(23), 1416–1417 (1971).
[CrossRef]

R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011).
[CrossRef] [PubMed]

Sato, T.

U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
[CrossRef]

Shimotsuma, Y.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011).
[CrossRef] [PubMed]

Siegman, A. E.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26(10), 5366–5381 (1982).
[CrossRef]

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Squier, J.

Stoian, R.

Stranick, S. J.

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Tu, C.

Venable, D. D.

D. D. Venable and R. B. Kay, “Polarization effects in four-photon conductivity in quartz,” Appl. Phys. Lett.27(1), 48–49 (1975).
[CrossRef]

Villafranca, A.

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

Von Alvensleben, F.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Wang, H. T.

Wang, L. J.

Wang, X. L.

Washio, K.

U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
[CrossRef]

Watkins, K. G.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

Welling, H.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

Withford, M. J.

Yang, W.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Zhao, Q. Z.

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

D. D. Venable and R. B. Kay, “Polarization effects in four-photon conductivity in quartz,” Appl. Phys. Lett.27(1), 48–49 (1975).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012).
[CrossRef]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999).
[CrossRef]

Bull. Am. Phys. Soc. (1)

R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).

J. Chem. Phys. (1)

H. S. Carman and R. N. Compton, “High-order multiphoton ionization photoelectron spectroscopy of nitric oxide,” J. Chem. Phys.90(3), 1307 (1989).
[CrossRef]

New J. Phys. (1)

J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (1)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26(10), 5366–5381 (1982).
[CrossRef]

Phys. Rev. Lett. (5)

R. A. Fox, R. M. Kogan, and E. J. Robinson, “Laser Triple-Quantum Photoionization of Cesium,” Phys. Rev. Lett.26(23), 1416–1417 (1971).
[CrossRef]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

H. R. Reiss, “Polarization Effects in High-Order Multiphoton Ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
[CrossRef]

Proc. SPIE (4)

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing by use of a spatial light modulator,” Proc. SPIE6458, 645815 (2007).
[CrossRef]

C. Föhl, D. Breitling, and F. Dausinger, “Precise drilling of steel with ultrashort plused solid-state lasers,” Proc. SPIE5121, 271–279 (2003).
[CrossRef]

Other (5)

J. Zhang, M. Gecevicius, M. Beresna, and P. G. Kazansky, “5D Data Storage by Ultrafast Laser Nanostructuring in Glass”, in Conference on Lasers and Electro-Optics, Technical Digest (online) (Optical Society of America, 2013), paper CTh5D. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTh5D.9
[CrossRef]

L. Ye, Laser Group, School of Engineering, University of Liverpool, L69 3GQ, UK, W. Perrie, O. Allegre, Y. Jin, Z. Kuang, P. Scully, E. Fearon, D. Eckford, S. Edwardson, and G. Dearden are preparing a manuscript to be called “NUV femtosecond laser inscription of volume Bragg gratings in poly (methyl) methacrylate with linear and circular polarizations”.

R. W. Boyd, Nonlinear Optics (Academic press, Burlington MA, Elsevier, 2008), Chap. 4.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, Inc., New York, 1975), Chap. 2.

H. Kleinpoppen, Constituents of Matter, Atoms, Molecules, Nuclei and Particles, p142, Ed. Bergmann/Schaefer, Copyright Walter de Gruyer, Berlin, New York (1997), Berlin, Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic showing how the SLMs together with the waveplates are used to control the wavefront and polarization of a picosecond-pulse laser microprocessing setup. The laser source provides a 532nm wavelength, 10ps pulse beam with a horizontal linear polarization, incident on SLM1. After SLM1, a half-waveplate tilts the polarization direction to + 45, incident on SLM2. In this setup, SLM1 is used to control the wavefront whereas SLM2 is used to control the polarization. The “polarization test components” are removed when the microprocessing tests are carried out.

Fig. 2
Fig. 2

Summary of the various beam configurations used for the experiments. ϕ 1 ( x , y ) and ϕ 2 ( x , y ) are adjusted to shape the beam wavefront and polarization respectively. The resulting collimated beams are analyzed with a horizontally-oriented polarizing filter and SPIRICON beam profiler, located just before Lens 1 (see Fig. 1). The (unfocused) beam profile observed in each configuration is shown in the right-hand column (the color-coded scale represents intensity in arbitrary units and the arrows represents the transmission axis of the analyzer). Note that the vertical linearly polarized beam is completely blocked by the analyzer.

Fig. 3
Fig. 3

(Centre) Optical micrographs showing the processed geometry, which is produced by marking four distinct sets of laser spots, each set using a different state of polarization. (Top and bottom) magnified regions of laser spots, imaged with an SEM. The ablation spots had been produced either with a radially (top-left inlay), azimuthally (top-right inlay), horizontally (bottom-left) and vertically (bottom-right) polarized beam. The red arrows represent the direction of local electric field vectors.

Fig. 4
Fig. 4

Optical micrographs showing the processed geometry, imaged with side-illumination at grazing incidence. The illumination source was a white light, unpolarized source from a tungsten lamp coupled through a flexible optical fiber. The red arrows show the axis of illumination, which is horizontal in (a) and vertical in (b). Thanks to the diffractive properties of LIPSS, only the areas that had been exposed with polarization vectors parallel to this axis reflect the low angle illumination through the microscope. The other areas remain dark.

Fig. 5
Fig. 5

Optical micrograph showing the produced array of laser spots, imaged with side-illumination at grazing incidence (red arrows). Thanks to the diffractive properties of LIPSS, only the areas that had been exposed with polarization vectors parallel to the red arrows reflect the low angle illumination through the microscope. The other areas remain dark. This confirmed that the expected state of polarization had been applied in each region of the processed area.

Fig. 6
Fig. 6

Optical micrograph showing a laser spot array, imaged with side-illumination at grazing incidence (red arrows). Thanks to the diffractive properties of LIPSS, only the areas that had been exposed with polarization vectors parallel to the red arrows reflect the low angle illumination through the microscope. The array had been processed by sequentially marking sets of four laser spots, each with a distinct state of polarization. The bottom-left inlay shows one such set of laser spots.

Fig. 7
Fig. 7

(Centre) Optical micrograph showing the processed area, imaged with side-illumination at grazing incidence (red arrows). Four states of polarization, linear horizontal and vertical, radial and azimuthal were sequentially produced to process each region within the scanning path. The magnified inlays (top and bottom) show SEM images of the complex patterns of LIPSS imprinted in each region.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J ( x , y ) = e i π 2 × e i ϕ 1 ( x , y ) × e i ϕ 2 ( x , y ) 2 × ( sin ϕ 2 ( x , y ) 2 cos ϕ 2 ( x , y ) 2 )

Metrics