Abstract

A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Guibert, W. Perrard, and C. Morin, “Concentration measurements in a pressurized and heated gas mixture flow using laser induced fluorescence,” J. Fluids Eng. Trans. ASME.124(2), 512–522 (2002).
  2. J. A. Sutton, B. T. Fisher, and J. W. Fleming, “A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity,” Exp. Fluids45(5), 869–881 (2008).
    [CrossRef]
  3. R. Sadanandan, P. Kutne, A. Steinberg, and W. Meier, “Investigation of the syngas flame characteristics at elevated pressures using optical and laser diagnostic methods,” Flow Turbul. Combus.89(2), 275–294 (2012).
    [CrossRef]
  4. M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
    [CrossRef]
  5. L. Wei, Z. Chen, and W. Min, “Stimulated emission reduced fluorescence microscopy: A concept for extending the fundamental depth limit of two-photon fluorescence imaging,” Biomed. Opt. Express3(6), 1465–1475 (2012).
    [CrossRef] [PubMed]
  6. B. Valeur, Molecular Fluorescence Principles and Applications (Wiley-VCH Weinheim, 2002).
  7. T. Kreis, Holographic Interferometry Principles and Mmethods (Akademie Ferlag, 1996).
  8. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
    [CrossRef]
  9. E. Amer, P. Gren, and M. Sjödahl, “Shock wave generation in laser ablation studied using pulsed digital holographic interferometry,” J. Phys. D Appl. Phys.41(21), 215502 (2008).
    [CrossRef]
  10. E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
    [CrossRef]
  11. E. Olsson, P. Gren, and M. Sjödahl, “Photoacoustic waves generated in blood studied using pulsed digital holography,” Appl. Opt.49(16), 3053–3058 (2010).
    [CrossRef] [PubMed]
  12. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 018005 (2010).
  13. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley & Sons Ltd, 2001).
  14. S. Helgason, The Radon Transform (Birkhäuser, 1980).
  15. E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng.47(7-8), 793–799 (2009).
    [CrossRef]
  16. E. Amer, P. Gren, A. F. H. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci.255(21), 8917–8925 (2009).
    [CrossRef]
  17. Y. H. Kim, S. J. Park, S.-W. Jeon, S. Ju, C.-S. Park, W.-T. Han, and B. H. Lee, “Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe,” Opt. Express20(21), 23744–23754 (2012).
    [CrossRef] [PubMed]

2012

2011

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

2010

E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
[CrossRef]

E. Olsson, P. Gren, and M. Sjödahl, “Photoacoustic waves generated in blood studied using pulsed digital holography,” Appl. Opt.49(16), 3053–3058 (2010).
[CrossRef] [PubMed]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 018005 (2010).

2009

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng.47(7-8), 793–799 (2009).
[CrossRef]

E. Amer, P. Gren, A. F. H. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci.255(21), 8917–8925 (2009).
[CrossRef]

2008

J. A. Sutton, B. T. Fisher, and J. W. Fleming, “A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity,” Exp. Fluids45(5), 869–881 (2008).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Shock wave generation in laser ablation studied using pulsed digital holographic interferometry,” J. Phys. D Appl. Phys.41(21), 215502 (2008).
[CrossRef]

2002

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

P. Guibert, W. Perrard, and C. Morin, “Concentration measurements in a pressurized and heated gas mixture flow using laser induced fluorescence,” J. Fluids Eng. Trans. ASME.124(2), 512–522 (2002).

Aldén, M.

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

Amer, E.

E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
[CrossRef]

E. Amer, P. Gren, A. F. H. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci.255(21), 8917–8925 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng.47(7-8), 793–799 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Shock wave generation in laser ablation studied using pulsed digital holographic interferometry,” J. Phys. D Appl. Phys.41(21), 215502 (2008).
[CrossRef]

Bastiaans, R. J. M.

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

Chen, Z.

De Goey, L. P. H.

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

El Shaer, M.

E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
[CrossRef]

Fisher, B. T.

J. A. Sutton, B. T. Fisher, and J. W. Fleming, “A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity,” Exp. Fluids45(5), 869–881 (2008).
[CrossRef]

Fleming, J. W.

J. A. Sutton, B. T. Fisher, and J. W. Fleming, “A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity,” Exp. Fluids45(5), 869–881 (2008).
[CrossRef]

Gren, P.

E. Olsson, P. Gren, and M. Sjödahl, “Photoacoustic waves generated in blood studied using pulsed digital holography,” Appl. Opt.49(16), 3053–3058 (2010).
[CrossRef] [PubMed]

E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
[CrossRef]

E. Amer, P. Gren, A. F. H. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci.255(21), 8917–8925 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng.47(7-8), 793–799 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Shock wave generation in laser ablation studied using pulsed digital holographic interferometry,” J. Phys. D Appl. Phys.41(21), 215502 (2008).
[CrossRef]

Guibert, P.

P. Guibert, W. Perrard, and C. Morin, “Concentration measurements in a pressurized and heated gas mixture flow using laser induced fluorescence,” J. Fluids Eng. Trans. ASME.124(2), 512–522 (2002).

Han, W.-T.

Jeon, S.-W.

Ju, S.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

Kaplan, A. F. H.

E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
[CrossRef]

E. Amer, P. Gren, A. F. H. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci.255(21), 8917–8925 (2009).
[CrossRef]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 018005 (2010).

Kim, Y. H.

Kutne, P.

R. Sadanandan, P. Kutne, A. Steinberg, and W. Meier, “Investigation of the syngas flame characteristics at elevated pressures using optical and laser diagnostic methods,” Flow Turbul. Combus.89(2), 275–294 (2012).
[CrossRef]

Lee, B. H.

Li, Z. S.

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

Meier, W.

R. Sadanandan, P. Kutne, A. Steinberg, and W. Meier, “Investigation of the syngas flame characteristics at elevated pressures using optical and laser diagnostic methods,” Flow Turbul. Combus.89(2), 275–294 (2012).
[CrossRef]

Min, W.

Morin, C.

P. Guibert, W. Perrard, and C. Morin, “Concentration measurements in a pressurized and heated gas mixture flow using laser induced fluorescence,” J. Fluids Eng. Trans. ASME.124(2), 512–522 (2002).

Olsson, E.

Park, C.-S.

Park, S. J.

Perrard, W.

P. Guibert, W. Perrard, and C. Morin, “Concentration measurements in a pressurized and heated gas mixture flow using laser induced fluorescence,” J. Fluids Eng. Trans. ASME.124(2), 512–522 (2002).

Prins, M. J.

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

Sadanandan, R.

R. Sadanandan, P. Kutne, A. Steinberg, and W. Meier, “Investigation of the syngas flame characteristics at elevated pressures using optical and laser diagnostic methods,” Flow Turbul. Combus.89(2), 275–294 (2012).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

Sjödahl, M.

E. Olsson, P. Gren, and M. Sjödahl, “Photoacoustic waves generated in blood studied using pulsed digital holography,” Appl. Opt.49(16), 3053–3058 (2010).
[CrossRef] [PubMed]

E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
[CrossRef]

E. Amer, P. Gren, A. F. H. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci.255(21), 8917–8925 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng.47(7-8), 793–799 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Shock wave generation in laser ablation studied using pulsed digital holographic interferometry,” J. Phys. D Appl. Phys.41(21), 215502 (2008).
[CrossRef]

Steinberg, A.

R. Sadanandan, P. Kutne, A. Steinberg, and W. Meier, “Investigation of the syngas flame characteristics at elevated pressures using optical and laser diagnostic methods,” Flow Turbul. Combus.89(2), 275–294 (2012).
[CrossRef]

Sutton, J. A.

J. A. Sutton, B. T. Fisher, and J. W. Fleming, “A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity,” Exp. Fluids45(5), 869–881 (2008).
[CrossRef]

Van Oijen, J. A.

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

Wei, L.

Appl. Opt.

Appl. Surf. Sci.

E. Amer, P. Gren, A. F. H. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci.255(21), 8917–8925 (2009).
[CrossRef]

E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, “Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry,” Appl. Surf. Sci.256(14), 4633–4641 (2010).
[CrossRef]

Biomed. Opt. Express

Exp. Fluids

J. A. Sutton, B. T. Fisher, and J. W. Fleming, “A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity,” Exp. Fluids45(5), 869–881 (2008).
[CrossRef]

Flow Turbul. Combus.

R. Sadanandan, P. Kutne, A. Steinberg, and W. Meier, “Investigation of the syngas flame characteristics at elevated pressures using optical and laser diagnostic methods,” Flow Turbul. Combus.89(2), 275–294 (2012).
[CrossRef]

J. Anal. Appl. Pyrolysis

M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. Van Oijen, M. Aldén, and L. P. H. De Goey, “Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using laser-induced fluorescence,” J. Anal. Appl. Pyrolysis92(2), 280–286 (2011).
[CrossRef]

J. Fluids Eng. Trans. ASME.

P. Guibert, W. Perrard, and C. Morin, “Concentration measurements in a pressurized and heated gas mixture flow using laser induced fluorescence,” J. Fluids Eng. Trans. ASME.124(2), 512–522 (2002).

J. Phys. D Appl. Phys.

E. Amer, P. Gren, and M. Sjödahl, “Shock wave generation in laser ablation studied using pulsed digital holographic interferometry,” J. Phys. D Appl. Phys.41(21), 215502 (2008).
[CrossRef]

Meas. Sci. Technol.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng.47(7-8), 793–799 (2009).
[CrossRef]

SPIE Rev.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 018005 (2010).

Other

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley & Sons Ltd, 2001).

S. Helgason, The Radon Transform (Birkhäuser, 1980).

B. Valeur, Molecular Fluorescence Principles and Applications (Wiley-VCH Weinheim, 2002).

T. Kreis, Holographic Interferometry Principles and Mmethods (Akademie Ferlag, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The experimental setup of LIF holography. M1 and M2: mirrors, NL: negative lens, L1: collimation lens, L: lens system for imaging, A: aperture, D: diffuser, BS1 and BS2: beam splitters.

Fig. 2
Fig. 2

Intensity maps showing the gain of the probe beam caused by the stimulated LIF emission, the probe beam energy density is 0.1 mJ/cm2. (a) Ep is 8.3 mJ and c is 0.32 g/L, (b) Ep is 0.94 mJ and c is 0.32 g/L and (c) Ep is 8.3 mJ and c is 0.05 g/L.

Fig. 3
Fig. 3

Intensity profiles at different pump beam energies and dye concentrations (an average from Y = 4.2 mm to Y = 4.3 mm).

Fig. 4
Fig. 4

Phase maps recorded after different numbers of pump pulses and the corresponding phase difference profiles with an Ep of 8.3 mJ and a c of 0.32 g/L. (a) phase map recorded after 3 pump pulses, (b) phase map recorded after 10 pump pulses and (c) the corresponding phase difference profiles (an average from Y = 4.6 mm to 4.7 mm).

Fig. 5
Fig. 5

Phase maps recorded after two different numbers of pump pulses with an Ep of 8.3 mJ and a c of 0.05 g/L. (a) after 3 pump pulses and (b) after 10 pump pulses.

Fig. 6
Fig. 6

Refractive index difference profiles at Y = 0.28 mm at different positions from the cuvette wall at two different dye concentrations at Ep of 8.3 mJ. (a) c = 0.32 g/L and (b) c = 0.05 g/L.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J R O i = U R * U O i =| U R || U O i |exp[ i( φ O i φ R ) ],
γ= J R O 1 * J RO 2 | J R O 1 | 2 = | U O 2 |exp[ i( φ O 2 φ O 1 ) ] | U O 1 | ,
E=ρV c P ΔT,

Metrics