Abstract

Finite-Difference Time-Domain (FDTD) calculations are used to characterize the electric field in the vicinity of a sharp silver or gold cone with an apex diameter of 10 nm. The simulations are utilized to predict the intensity and the distribution of the locally enhanced electric field in tip-enhanced Raman spectroscopy (TERS). A side-by-side comparison of the enhanced electric field induced by a radially and a linearly polarized light in both gap-mode and conventional TERS setup is performed. For this purpose, a radially polarized source is introduced and integrated into the FDTD modeling. Additionally, the optical effect of a thin protective layer of alumina on the enhancement of the electric field is investigated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
    [CrossRef] [PubMed]
  2. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl.47(43), 8178–8191 (2008).
    [CrossRef] [PubMed]
  3. S. Kawata, “Plasmonics for nanoimaging and nanospectroscopy,” Appl. Spectrosc.67(2), 117–125 (2013).
    [CrossRef] [PubMed]
  4. M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
    [CrossRef] [PubMed]
  5. E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. Engl.47(9), 1658–1661 (2008).
    [CrossRef] [PubMed]
  6. R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
    [CrossRef] [PubMed]
  7. N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
    [CrossRef] [PubMed]
  8. L. Novotny, “Optical antennas tuned to pitch,” Nature455(7215), 887 (2008).
    [CrossRef]
  9. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009).
    [CrossRef]
  10. L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy71(1-4), 21–29 (1998).
    [CrossRef]
  11. J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013).
    [CrossRef]
  12. R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
    [CrossRef] [PubMed]
  13. A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys.122(18), 184716 (2005).
    [CrossRef] [PubMed]
  14. M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A113(26), 7508–7513 (2009).
    [CrossRef] [PubMed]
  15. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
    [CrossRef]
  16. C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
    [CrossRef] [PubMed]
  17. J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008).
    [CrossRef] [PubMed]
  18. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
    [CrossRef] [PubMed]
  19. M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
    [CrossRef] [PubMed]
  20. F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
    [CrossRef]
  21. C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
    [CrossRef]
  22. X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008).
    [CrossRef]
  23. R. L. Agapov, A. P. Sokolov, and M. D. Foster, “Robust probes for high resolution chemical detection and imaging,” Proc. SPIE8378, 8378131–83781310 (2012).
    [CrossRef]
  24. A. Taflove and S. C. Hagness, in Computational Electrodynamics: the Finite - Difference Time - Domain Method (Artech House, 2000).
  25. B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011).
    [CrossRef]
  26. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic, 1998).
  27. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2009).
  28. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett.34(12), 1870–1872 (2009).
    [CrossRef] [PubMed]
  29. T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates - ideal substrates for tip-enhanced Raman scattering experiments,” Small5(4), 432–436 (2009).
    [CrossRef] [PubMed]
  30. C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
    [CrossRef]
  31. S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
    [CrossRef]

2013 (5)

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013).
[CrossRef]

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
[CrossRef]

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

S. Kawata, “Plasmonics for nanoimaging and nanospectroscopy,” Appl. Spectrosc.67(2), 117–125 (2013).
[CrossRef] [PubMed]

2012 (3)

R. L. Agapov, A. P. Sokolov, and M. D. Foster, “Robust probes for high resolution chemical detection and imaging,” Proc. SPIE8378, 8378131–83781310 (2012).
[CrossRef]

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

2011 (4)

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
[CrossRef] [PubMed]

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011).
[CrossRef]

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

2009 (6)

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett.34(12), 1870–1872 (2009).
[CrossRef] [PubMed]

T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates - ideal substrates for tip-enhanced Raman scattering experiments,” Small5(4), 432–436 (2009).
[CrossRef] [PubMed]

C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
[CrossRef]

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009).
[CrossRef]

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A113(26), 7508–7513 (2009).
[CrossRef] [PubMed]

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

2008 (6)

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008).
[CrossRef] [PubMed]

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008).
[CrossRef]

L. Novotny, “Optical antennas tuned to pitch,” Nature455(7215), 887 (2008).
[CrossRef]

E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. Engl.47(9), 1658–1661 (2008).
[CrossRef] [PubMed]

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl.47(43), 8178–8191 (2008).
[CrossRef] [PubMed]

2005 (1)

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys.122(18), 184716 (2005).
[CrossRef] [PubMed]

2004 (1)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

1998 (1)

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy71(1-4), 21–29 (1998).
[CrossRef]

Agapov, R. L.

R. L. Agapov, A. P. Sokolov, and M. D. Foster, “Robust probes for high resolution chemical detection and imaging,” Proc. SPIE8378, 8378131–83781310 (2012).
[CrossRef]

Bailo, E.

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
[CrossRef] [PubMed]

E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. Engl.47(9), 1658–1661 (2008).
[CrossRef] [PubMed]

Barrios, C. A.

C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

Beams, R.

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

Belyaev, A.

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

Blum, C.

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

Böhme, R.

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

Cançado, L. G.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009).
[CrossRef]

Chen, H.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

Cui, X.

X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008).
[CrossRef]

Deckert, V.

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
[CrossRef] [PubMed]

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates - ideal substrates for tip-enhanced Raman scattering experiments,” Small5(4), 432–436 (2009).
[CrossRef] [PubMed]

E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. Engl.47(9), 1658–1661 (2008).
[CrossRef] [PubMed]

Deckert-Gaudig, T.

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
[CrossRef] [PubMed]

T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates - ideal substrates for tip-enhanced Raman scattering experiments,” Small5(4), 432–436 (2009).
[CrossRef] [PubMed]

Demming, A. L.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys.122(18), 184716 (2005).
[CrossRef] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Duche, D.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Erni, D.

X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008).
[CrossRef]

Escoubas, L.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Eyer, K.

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

Festy, F.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys.122(18), 184716 (2005).
[CrossRef] [PubMed]

Flory, F.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Foster, M. D.

R. L. Agapov, A. P. Sokolov, and M. D. Foster, “Robust probes for high resolution chemical detection and imaging,” Proc. SPIE8378, 8378131–83781310 (2012).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

Galarreta, B. C.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011).
[CrossRef]

Gavrilyuk, V.

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

Gobbo, P.

F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
[CrossRef]

Goldberg, H. A.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

Grohe, B.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

Hartschuh, A.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009).
[CrossRef]

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl.47(43), 8178–8191 (2008).
[CrossRef] [PubMed]

Hartschuh, R. D.

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Hersam, M. C.

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

Höppener, C.

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

Hou, R.

F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
[CrossRef]

Huang, Z.

Hunter, G. K.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

Jiang, N.

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

Kawata, S.

S. Kawata, “Plasmonics for nanoimaging and nanospectroscopy,” Appl. Spectrosc.67(2), 117–125 (2013).
[CrossRef] [PubMed]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Kazemi-Zanjani, N.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

Kisliuk, A. M.

C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

Klingsporn, J. M.

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

Krause-Buchholz, U.

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

Krayev, A.

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

Lagugné-Labarthet, F.

F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
[CrossRef]

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011).
[CrossRef]

Le Rouzo, J.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Lin, X.

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
[CrossRef] [PubMed]

Lu, F.

Malkovskiy, A. V.

C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

Mkandawire, M.

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

Nauenheim, C.

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

Nicklaus, M.

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

Novotny, L.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009).
[CrossRef]

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

L. Novotny, “Optical antennas tuned to pitch,” Nature455(7215), 887 (2008).
[CrossRef]

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy71(1-4), 21–29 (1998).
[CrossRef]

Opilik, L.

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

Oswald, B.

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013).
[CrossRef]

Pashaee, F.

F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
[CrossRef]

Paulite, M.

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

Pettinger, B.

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008).
[CrossRef] [PubMed]

Popp, J.

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

Pozzi, E. A.

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Richards, D.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys.122(18), 184716 (2005).
[CrossRef] [PubMed]

Rödel, G.

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

Rösch, P.

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

Ruediger, A.

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

Rupar, I.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011).
[CrossRef]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Sánchez, E. J.

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy71(1-4), 21–29 (1998).
[CrossRef]

Schmid, T.

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013).
[CrossRef]

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

Seideman, T.

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A113(26), 7508–7513 (2009).
[CrossRef] [PubMed]

Simon, J.-J.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Sokolov, A. P.

R. L. Agapov, A. P. Sokolov, and M. D. Foster, “Robust probes for high resolution chemical detection and imaging,” Proc. SPIE8378, 8378131–83781310 (2012).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

Sonntag, M. D.

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

Stadler, J.

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013).
[CrossRef]

Steidtner, J.

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008).
[CrossRef] [PubMed]

Sukharev, M.

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A113(26), 7508–7513 (2009).
[CrossRef] [PubMed]

Torchio, P.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Treffer, R.

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
[CrossRef] [PubMed]

Van Duyne, R. P.

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

Vedraine, S.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Walker, G. C.

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

Workentin, M. S.

F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
[CrossRef]

Xie, X. S.

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy71(1-4), 21–29 (1998).
[CrossRef]

Young, A.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011).
[CrossRef]

Zenobi, R.

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013).
[CrossRef]

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008).
[CrossRef]

Zhang, W.

X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008).
[CrossRef]

Zheng, W.

ACS Nano (2)

M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013).
[CrossRef] [PubMed]

E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl.47(43), 8178–8191 (2008).
[CrossRef] [PubMed]

E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. Engl.47(9), 1658–1661 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Beilstein J Nanotechnol (1)

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys.122(18), 184716 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. A (1)

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A113(26), 7508–7513 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. C (3)

F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013).
[CrossRef]

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011).
[CrossRef]

C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009).
[CrossRef]

J. Raman Spectrosc. (2)

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009).
[CrossRef]

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013).
[CrossRef]

Nano Lett. (1)

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

Nature (1)

L. Novotny, “Optical antennas tuned to pitch,” Nature455(7215), 887 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008).
[CrossRef]

R. L. Agapov, A. P. Sokolov, and M. D. Foster, “Robust probes for high resolution chemical detection and imaging,” Proc. SPIE8378, 8378131–83781310 (2012).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012).
[CrossRef] [PubMed]

Small (1)

T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates - ideal substrates for tip-enhanced Raman scattering experiments,” Small5(4), 432–436 (2009).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Ultramicroscopy (1)

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy71(1-4), 21–29 (1998).
[CrossRef]

Other (3)

A. Taflove and S. C. Hagness, in Computational Electrodynamics: the Finite - Difference Time - Domain Method (Artech House, 2000).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic, 1998).

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Transverse component of a focused radially polarized beam. (b) Longitudinal component of a focused radially polarized beam in 3D and 2D presentations. (c) Electric energy density of the total field of a focused linearly x-polarized light from top and (d) side views. (e) Longitudinal field of a linearly x-polarized light from top and (f) side views.

Fig. 2
Fig. 2

Electric field distribution at the 10 nm apex of a silver tip illuminated at 532 nm by (a) linearly polarized light along the tip axis, (b) linearly polarized light along the tip axis with 1 nm separation from a gold substrate, (c) linearly polarized light perpendicular to the tip axis,(d) linearly polarized light along the tip axis with 1 nm separation from a silver substrate,(e) radially polarized light along the tip axis,(f) radially polarized light along the tip axis with 1 nm separation from a gold substrate.

Fig. 3
Fig. 3

Electric field distribution at the 10 nm apex of a silver tip located in 1nm distance from a gold substrate and protected with 1 nm Al2O3 layer. Tip is illuminated at 532 nm wavelength by (a) linearly polarized light along the tip axis (b) linearly polarized light perpendicular to the tip axis (c) radially polarized light along the tip axis.

Tables (1)

Tables Icon

Table 1 Comparison of the electric field enhancement at the apex of silver or gold tip in 1 nm distance from thin gold or silver substrate

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E z ( ρ,z )=2iA 0 α P( θ ) cos 1/2 ( θ ) sin 2 ( θ ) J 0 ( κρsinθ )×exp( iκzcosθ )dθ,
E tr ( ρ,z )=A 0 α P( θ ) cos 1/2 ( θ )sin( 2θ ) J 1 ( κρsinθ )×exp( iκzcosθ )dθ,

Metrics