M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol. 26, 628–635 (2008).
[Crossref]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23, 251–253 (2011).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23, 314–316 (2011).
[Crossref]
K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]
R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett. 38, 1419–1421 (2013).
[Crossref]
[PubMed]
R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express 21, 6249–6256 (2013).
[Crossref]
[PubMed]
R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett. 25, 910–913 (2013).
[Crossref]
R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE 5, 7100311–7100311 (2013).
[Crossref]
R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett. 37, 2604–2606 (2012).
[Crossref]
[PubMed]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett. 25, 910–913 (2013).
[Crossref]
R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express 21, 6249–6256 (2013).
[Crossref]
[PubMed]
R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE 5, 7100311–7100311 (2013).
[Crossref]
R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett. 38, 1419–1421 (2013).
[Crossref]
[PubMed]
R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett. 37, 2604–2606 (2012).
[Crossref]
[PubMed]
K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
[Crossref]
[PubMed]
J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” Photonics Journal, IEEE 2, 359–386 (2010).
[Crossref]
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett. 34, 334–336 (2009).
[Crossref]
[PubMed]
M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express 15, 6152–6166 (2007).
[Crossref]
[PubMed]
L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19, 1209–1211 (2007).
[Crossref]
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[Crossref]
M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[Crossref]
[PubMed]
G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53, 3090–3097 (2005).
[Crossref]
A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech. 45, 1527–1530 (1997).
[Crossref]
A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett. 31, 1485–1486 (1995).
[Crossref]
A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[Crossref]
T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech. 58, 2992–3000 (2010).
[Crossref]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol. 9, 1124–1131 (1991).
[Crossref]
K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]
L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE 8, 1656–1658 (1996).
[Crossref]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[Crossref]
[PubMed]
D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express 19, 24838–24848 (2011).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol. 31, 571–586 (2013).
[Crossref]
I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
[Crossref]
J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon. 1, 319–330 (2007).
[Crossref]
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201–209 (2006).
[Crossref]
D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[Crossref]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19, 1209–1211 (2007).
[Crossref]
M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54, 804–809 (2006).
[Crossref]
J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[Crossref]
J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett. 22, 1422–1424 (2010).
[Crossref]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett. 21, 52–54 (2011).
[Crossref]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]
[PubMed]
W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[Crossref]
[PubMed]
X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.
X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[Crossref]
X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[Crossref]
M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54, 804–809 (2006).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE 8, 1656–1658 (1996).
[Crossref]
Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett. 20, 1718–1720 (2008).
[Crossref]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech. 45, 1527–1530 (1997).
[Crossref]
A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett. 31, 1485–1486 (1995).
[Crossref]
M. Sumetsky, B. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002).
[Crossref]
[PubMed]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]
T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol. 15, 1277–1294 (1997).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag. 49, s45–S52 (2011).
[Crossref]
S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
[Crossref]
A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech. 45, 1527–1530 (1997).
[Crossref]
A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[Crossref]
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag. 49, s45–S52 (2011).
[Crossref]
J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[Crossref]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol. 31, 571–586 (2013).
[Crossref]
I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
[Crossref]
C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38, 727–729 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[Crossref]
[PubMed]
J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284, 3251–3257 (2011).
[Crossref]
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]
[PubMed]
X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[Crossref]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech. 58, 2992–3000 (2010).
[Crossref]
K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]
C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38, 727–729 (2013).
[Crossref]
[PubMed]
C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett. 22, 1422–1424 (2010).
[Crossref]
L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE 8, 1656–1658 (1996).
[Crossref]
D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett. 31, 1010–1012 (1995).
[Crossref]
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]
[PubMed]
W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[Crossref]
[PubMed]
X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett. 9, 241–243 (1997).
[Crossref]
K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
M. J. Khan, Integrated Optical Filters using Bragg Gratings and Resonators (Ph.D. thesis, Massachussets Institute of Technology, 2002).
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett. 37, 181–183 (2012).
[Crossref]
[PubMed]
S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
[Crossref]
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett. 20, 1718–1720 (2008).
[Crossref]
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[Crossref]
J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]
R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett. 38, 1419–1421 (2013).
[Crossref]
[PubMed]
A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21, 8953–8963 (2013).
[Crossref]
[PubMed]
R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express 21, 6249–6256 (2013).
[Crossref]
[PubMed]
M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol. 26, 628–635 (2008).
[Crossref]
Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett. 20, 1718–1720 (2008).
[Crossref]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol. 9, 1124–1131 (1991).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[Crossref]
M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34, 1717–1719 (2009).
[Crossref]
[PubMed]
M. Li, J. Hayashi, and H. Li, “Advanced design of a complex fiber Bragg grating for a multichannel asymmetrical triangular filter,” J. Opt. Soc. Am. B 26, 228–234 (2009).
[Crossref]
M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express 16, 19388–19394 (2008).
[Crossref]
M. Li and H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Opt. Express 16, 9821–9828 (2008).
[Crossref]
[PubMed]
H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol. 25, 2739–2750 (2007).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett. 25, 910–913 (2013).
[Crossref]
R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express 21, 6249–6256 (2013).
[Crossref]
[PubMed]
R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE 5, 7100311–7100311 (2013).
[Crossref]
R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett. 38, 1419–1421 (2013).
[Crossref]
[PubMed]
W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60, 1287–1296 (2012).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23, 251–253 (2011).
[Crossref]
Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett. 21, 52–54 (2011).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23, 314–316 (2011).
[Crossref]
M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett. 35, 223–225 (2010).
[Crossref]
[PubMed]
M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1559–1561 (2010).
[Crossref]
M. Li, J. Hayashi, and H. Li, “Advanced design of a complex fiber Bragg grating for a multichannel asymmetrical triangular filter,” J. Opt. Soc. Am. B 26, 228–234 (2009).
[Crossref]
M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34, 1717–1719 (2009).
[Crossref]
[PubMed]
M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express 17, 19798–19807 (2009).
[Crossref]
[PubMed]
M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express 16, 19388–19394 (2008).
[Crossref]
M. Li and H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Opt. Express 16, 9821–9828 (2008).
[Crossref]
[PubMed]
H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol. 25, 2739–2750 (2007).
[Crossref]
W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60, 1287–1296 (2012).
[Crossref]
Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett. 21, 52–54 (2011).
[Crossref]
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech. 45, 1527–1530 (1997).
[Crossref]
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 14, 1020–1022 (2004).
[Crossref]
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett. 16, 305–307 (2004).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42, 2273–2277 (2003).
[Crossref]
[PubMed]
J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett. 14, 687–689 (2002).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol. 31, 571–586 (2013).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[Crossref]
T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
Y. X. Luo, “Study of fiber Bragg grating sensor in dam safety monitoring,” Applied Mechanics and Materials 312, 736–740 (2013).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol. 26, 628–635 (2008).
[Crossref]
M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag. 49, s45–S52 (2011).
[Crossref]
R. J. Mailloux, Phased Array Antenna Handbook (Artech House, Boston, MA, 2005).
K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[Crossref]
[PubMed]
D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express 19, 24838–24848 (2011).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[Crossref]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]
C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38, 727–729 (2013).
[Crossref]
[PubMed]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54, 880–886 (2006).
[Crossref]
D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett. 31, 1010–1012 (1995).
[Crossref]
R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).
[Crossref]
M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol. 26, 628–635 (2008).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett. 16, 305–307 (2004).
[Crossref]
A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech. 45, 1527–1530 (1997).
[Crossref]
A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett. 31, 1485–1486 (1995).
[Crossref]
M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol. 31, 571–586 (2013).
[Crossref]
K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
[Crossref]
[PubMed]
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol. 9, 1124–1131 (1991).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett. 22, 1422–1424 (2010).
[Crossref]
W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol. 9, 1124–1131 (1991).
[Crossref]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[Crossref]
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon. 1, 319–330 (2007).
[Crossref]
I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[Crossref]
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201–209 (2006).
[Crossref]
D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]
A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21, 8953–8963 (2013).
[Crossref]
[PubMed]
M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34, 1717–1719 (2009).
[Crossref]
[PubMed]
M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express 16, 19388–19394 (2008).
[Crossref]
G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53, 3090–3097 (2005).
[Crossref]
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201–209 (2006).
[Crossref]
D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett. 9, 241–243 (1997).
[Crossref]
M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett. 37, 181–183 (2012).
[Crossref]
[PubMed]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53, 3090–3097 (2005).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag. 49, s45–S52 (2011).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
Y.-J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng. 31, 297–324 (1999).
[Crossref]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE 8, 1656–1658 (1996).
[Crossref]
L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19, 1209–1211 (2007).
[Crossref]
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[Crossref]
[PubMed]
D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express 19, 24838–24848 (2011).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett. 37, 181–183 (2012).
[Crossref]
[PubMed]
C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol. 25, 2739–2750 (2007).
[Crossref]
M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag. 49, s45–S52 (2011).
[Crossref]
M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol. 26, 628–635 (2008).
[Crossref]
L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE 8, 1656–1658 (1996).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol. 31, 571–586 (2013).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol. 31, 571–586 (2013).
[Crossref]
I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[Crossref]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
[Crossref]
A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol. 24, 4628–4641 (2006).
[Crossref]
I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[Crossref]
F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]
G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53, 3090–3097 (2005).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23, 314–316 (2011).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23, 251–253 (2011).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol. 25, 2739–2750 (2007).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]
[PubMed]
W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[Crossref]
[PubMed]
X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38, 727–729 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[Crossref]
[PubMed]
C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19, 1209–1211 (2007).
[Crossref]
J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]
C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38, 727–729 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[Crossref]
[PubMed]
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett. 9, 241–243 (1997).
[Crossref]
K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
[Crossref]
[PubMed]
M. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
[Crossref]
M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).
M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett. 49(2013).
[Crossref]
K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
[Crossref]
[PubMed]
M. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[Crossref]
J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol. 9, 1124–1131 (1991).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett. 9, 241–243 (1997).
[Crossref]
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[Crossref]
F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]
W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol. 9, 1124–1131 (1991).
[Crossref]
J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284, 3251–3257 (2011).
[Crossref]
Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett. 21, 52–54 (2011).
[Crossref]
J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]
[PubMed]
W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[Crossref]
[PubMed]
X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.
X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[Crossref]
X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett. 16, 305–307 (2004).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
M. G. Wickham, “Integrated optical time delay unit,” United States Patent (1997).
A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech. 45, 1527–1530 (1997).
[Crossref]
A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol. 24, 4628–4641 (2006).
[Crossref]
R. Won, “Microwave photonics shines,” Nature Photon. 5, 736 (2011).
[Crossref]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42, 2273–2277 (2003).
[Crossref]
[PubMed]
J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett. 14, 687–689 (2002).
[Crossref]
J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett. 22, 1422–1424 (2010).
[Crossref]
H. Shahoei, J. Yao, and et al., “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express 21, 7521–7527 (2013).
[Crossref]
[PubMed]
W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60, 1287–1296 (2012).
[Crossref]
J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optics Communications 284, 3723–3736 (2011). Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23, 251–253 (2011).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23, 314–316 (2011).
[Crossref]
Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett. 21, 52–54 (2011).
[Crossref]
M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett. 35, 223–225 (2010).
[Crossref]
[PubMed]
M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1559–1561 (2010).
[Crossref]
M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express 17, 19798–19807 (2009).
[Crossref]
[PubMed]
J. Yao, “Microwave photonics,” J. Lightw. Technol. 27, 314–335 (2009).
[Crossref]
F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30, 2203–2205 (2005).
[Crossref]
[PubMed]
J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 14, 1020–1022 (2004).
[Crossref]
X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54, 804–809 (2006).
[Crossref]
G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53, 3090–3097 (2005).
[Crossref]
J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 14, 1020–1022 (2004).
[Crossref]
Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42, 2273–2277 (2003).
[Crossref]
[PubMed]
J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett. 14, 687–689 (2002).
[Crossref]
J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 14, 1020–1022 (2004).
[Crossref]
X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54, 880–886 (2006).
[Crossref]
J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett. 22, 1422–1424 (2010).
[Crossref]
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]
[PubMed]
X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.
X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38, 727–729 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[Crossref]
[PubMed]
Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett. 21, 52–54 (2011).
[Crossref]
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express 16, 2398–2404 (2008).
[Crossref]
[PubMed]
B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express 16, 2398–2404 (2008).
[Crossref]
[PubMed]
B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express 16, 2398–2404 (2008).
[Crossref]
[PubMed]
J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284, 3251–3257 (2011).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett. 9, 241–243 (1997).
[Crossref]
I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
[Crossref]
S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
[Crossref]
Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42, 2273–2277 (2003).
[Crossref]
[PubMed]
M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[Crossref]
[PubMed]
K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]
A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[Crossref]
Y. X. Luo, “Study of fiber Bragg grating sensor in dam safety monitoring,” Applied Mechanics and Materials 312, 736–740 (2013).
[Crossref]
A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett. 31, 1485–1486 (1995).
[Crossref]
D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett. 31, 1010–1012 (1995).
[Crossref]
M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett. 49(2013).
[Crossref]
M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag. 49, s45–S52 (2011).
[Crossref]
J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]
M. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
[Crossref]
T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312–8200312 (2013).
[Crossref]
Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett. 21, 52–54 (2011).
[Crossref]
J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[Crossref]
J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]
J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett. 14, 687–689 (2002).
[Crossref]
H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett. 9, 241–243 (1997).
[Crossref]
Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett. 20, 1718–1720 (2008).
[Crossref]
J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 14, 1020–1022 (2004).
[Crossref]
B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[Crossref]
J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett. 22, 1422–1424 (2010).
[Crossref]
I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[Crossref]
D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]
R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett. 25, 910–913 (2013).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23, 314–316 (2011).
[Crossref]
M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23, 251–253 (2011).
[Crossref]
M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]
L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19, 1209–1211 (2007).
[Crossref]
M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1559–1561 (2010).
[Crossref]
T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[Crossref]
X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett. 16, 305–307 (2004).
[Crossref]
L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[Crossref]
M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[Crossref]
A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[Crossref]
M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[Crossref]
L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE 8, 1656–1658 (1996).
[Crossref]
M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5, 48–58 (2013).
[Crossref]
W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60, 1287–1296 (2012).
[Crossref]
T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech. 58, 2992–3000 (2010).
[Crossref]
R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).
[Crossref]
X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54, 804–809 (2006).
[Crossref]
A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech. 45, 1527–1530 (1997).
[Crossref]
G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53, 3090–3097 (2005).
[Crossref]
X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54, 880–886 (2006).
[Crossref]
X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[Crossref]
J. Yao, “Microwave photonics,” J. Lightw. Technol. 27, 314–335 (2009).
[Crossref]
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201–209 (2006).
[Crossref]
M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol. 26, 628–635 (2008).
[Crossref]
W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol. 9, 1124–1131 (1991).
[Crossref]
A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol. 24, 4628–4641 (2006).
[Crossref]
H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol. 25, 2739–2750 (2007).
[Crossref]
T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol. 15, 1277–1294 (1997).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol. 31, 571–586 (2013).
[Crossref]
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev. 4, 751–779 (2010).
[Crossref]
M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon 4, 117–122 (2010).
[Crossref]
M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(2010).
[Crossref]
[PubMed]
F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]
R. Won, “Microwave photonics shines,” Nature Photon. 5, 736 (2011).
[Crossref]
J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon. 1, 319–330 (2007).
[Crossref]
J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284, 3251–3257 (2011).
[Crossref]
M. Sumetsky, B. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002).
[Crossref]
[PubMed]
M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express 17, 19798–19807 (2009).
[Crossref]
[PubMed]
Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient raman fiber laser,” Opt. Express 17, 23678–23683 (2009).
[Crossref]
M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[Crossref]
[PubMed]
M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express 15, 6152–6166 (2007).
[Crossref]
[PubMed]
B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express 16, 2398–2404 (2008).
[Crossref]
[PubMed]
M. Li and H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Opt. Express 16, 9821–9828 (2008).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]
D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[Crossref]
[PubMed]
M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]
[PubMed]
L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]
[PubMed]
D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express 19, 24838–24848 (2011).
[Crossref]
I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
[Crossref]
[PubMed]
K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
[Crossref]
[PubMed]
X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]
[PubMed]
W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]
[PubMed]
R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express 21, 6249–6256 (2013).
[Crossref]
[PubMed]
W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]
[PubMed]
H. Shahoei, J. Yao, and et al., “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express 21, 7521–7527 (2013).
[Crossref]
[PubMed]
A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21, 8953–8963 (2013).
[Crossref]
[PubMed]
M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express 16, 19388–19394 (2008).
[Crossref]
Y.-J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng. 31, 297–324 (1999).
[Crossref]
R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett. 38, 1419–1421 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[Crossref]
[PubMed]
C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38, 727–729 (2013).
[Crossref]
[PubMed]
M. Verbist, D. V. Thourhout, and W. Bogaerts, “Weak gratings in silicon-on-insulator for spectral filters based on volume holography,” Opt. Lett. 38, 386–388 (2013).
[Crossref]
[PubMed]
W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[Crossref]
[PubMed]
R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett. 37, 2604–2606 (2012).
[Crossref]
[PubMed]
E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett. 37, 181–183 (2012).
[Crossref]
[PubMed]
N. Na, H. Frish, I-Wei Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, “Efficient broadband silicon-on-insulator grating coupler with low backreflection,” Opt. Lett. 36, 2101–2103 (2011)
[Crossref]
[PubMed]
S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawide-band pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36, 2363–2365 (2011).
[Crossref]
[PubMed]
M. A. Preciado and M. A. Muriel, “Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission,” Opt. Lett. 33, 2458–2460 (2008).
[Crossref]
[PubMed]
M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett. 35, 223–225 (2010).
[Crossref]
[PubMed]
M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett. 34, 334–336 (2009).
[Crossref]
[PubMed]
M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34, 1717–1719 (2009).
[Crossref]
[PubMed]
F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30, 2203–2205 (2005).
[Crossref]
[PubMed]
A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[Crossref]
J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optics Communications 284, 3723–3736 (2011). Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
[Crossref]
R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE 5, 7100311–7100311 (2013).
[Crossref]
J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” Photonics Journal, IEEE 2, 359–386 (2010).
[Crossref]
M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).
S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
T. E. Murphy, J. Ferrera, J. T. Hastings, M. J. Khan, E. M. Koontz, M. H. Lim, H. Haus, L. A. Kolodziejski, and H. I. Smith, “Development of fabrication techniques for building integrated-optical grating-based filters,” [Online.] Available: http://nanoweb.mit.edu/annual-report00/16 .
B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
M. J. Khan, Integrated Optical Filters using Bragg Gratings and Resonators (Ph.D. thesis, Massachussets Institute of Technology, 2002).
M. Strain, Integrated Chirped Bragg Gratings for Dispersion Control (Ph.D. thesis, University of Glasgow, 2007), http://theses.gla.ac.uk/440/ .
M. G. Wickham, “Integrated optical time delay unit,” United States Patent (1997).
M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
[Crossref]
X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[Crossref]
R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).
X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.
R. J. Mailloux, Phased Array Antenna Handbook (Artech House, Boston, MA, 2005).
X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves [Online.] Available: http://www.iteam.upv.es/revista/2012/5_ITEAM_2012.pdf (2012).