Abstract

A mode-(de)multiplexer with low loss and large spectral bandwidth is proposed. The device is designed by utilizing a structure with cascaded asymmetric Y-junctions. By carefully controlling the widths of the wide and narrow arms of the Y-junctions, the fundamental mode of a narrow arm excites the higher-order mode of its stem in the multiplexing case, and a high-order mode of the stem separated from other lower-order modes evolves into the fundamental mode of the narrow arm in the demultiplexing case. As an example, a 1 × 4 mode-(de)multiplexer is analyzed by using the beam propagation method. Simulation results show the demultiplexed crosstalk is lower than –21.8 dB, under a common spectral bandwidth of 140 nm. The insertion loss is negligible.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Design of mode-sorting asymmetric Y-junctions

Nicolas Riesen and John D. Love
Appl. Opt. 51(15) 2778-2783 (2012)

Two-mode division multiplexing in a silicon-on-insulator ring resonator

Bryce A. Dorin and Winnie N. Ye
Opt. Express 22(4) 4547-4558 (2014)

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, and Chunlai Xue
Opt. Express 22(5) 5781-5786 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
    [Crossref] [PubMed]
  2. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21(11), 1950–1955 (1982).
    [Crossref] [PubMed]
  3. J. D. Love and N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [Crossref]
  4. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood., “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  5. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  6. D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” Asia Communications and Photonics Conference (2012).
    [Crossref]
  7. H. Y. Qiu, H. Yu, T. Hu, G. M. Jiang, H. F. Shao, P. Yu, J. Y. Yang, and X. Q. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  8. M. Izutsu, Y. Nakai, and T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett. 7(3), 136–138 (1982).
    [Crossref] [PubMed]
  9. J. Vandertol and J. H. Laarhuis, “A polarization splitter on LINBO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
    [Crossref]
  10. W. M. Henry and J. D. Love, “Asymmetric multimode Y-junction splitters,” Opt. Quantum Electron. 29(3), 379–392 (1997).
    [Crossref]
  11. N. Goto and G. L. Yip, “A TE-TM mode splitter in LINBO3 by proton-exchange and TI diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
    [Crossref]
  12. J. M. Castro, D. F. Geraghty, B. R. West, and S. Honkanen, “Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers,” Appl. Opt. 43(33), 6166–6173 (2004).
    [Crossref] [PubMed]
  13. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
    [Crossref] [PubMed]
  14. D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37(13), 829–831 (2001).
    [Crossref]
  15. J. D. Love and A. Ankiewicz, “Purely geometrical coarse wave-length multiplexer/demultiplexer,” Electron. Lett. 39(19), 1385–1386 (2003).
    [Crossref]
  16. W. K. Burns and F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
    [Crossref]
  17. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref] [PubMed]
  18. J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
    [Crossref]

2013 (2)

2012 (3)

2006 (1)

2004 (1)

2003 (1)

J. D. Love and A. Ankiewicz, “Purely geometrical coarse wave-length multiplexer/demultiplexer,” Electron. Lett. 39(19), 1385–1386 (2003).
[Crossref]

2001 (1)

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

2000 (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

1997 (1)

W. M. Henry and J. D. Love, “Asymmetric multimode Y-junction splitters,” Opt. Quantum Electron. 29(3), 379–392 (1997).
[Crossref]

1996 (1)

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

1991 (1)

J. Vandertol and J. H. Laarhuis, “A polarization splitter on LINBO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
[Crossref]

1989 (1)

N. Goto and G. L. Yip, “A TE-TM mode splitter in LINBO3 by proton-exchange and TI diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
[Crossref]

1982 (2)

1975 (1)

W. K. Burns and F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

Ankiewicz, A.

J. D. Love and A. Ankiewicz, “Purely geometrical coarse wave-length multiplexer/demultiplexer,” Electron. Lett. 39(19), 1385–1386 (2003).
[Crossref]

Berdagué, S.

Burns, W. K.

W. K. Burns and F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

Castro, J. M.

Dadap, J. I.

Dai, D.

D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” Asia Communications and Photonics Conference (2012).
[Crossref]

Driscoll, J. B.

Facq, P.

Geraghty, D. F.

Goto, N.

N. Goto and G. L. Yip, “A TE-TM mode splitter in LINBO3 by proton-exchange and TI diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
[Crossref]

Greiner, C. M.

Grote, R. R.

Henry, W. M.

W. M. Henry and J. D. Love, “Asymmetric multimode Y-junction splitters,” Opt. Quantum Electron. 29(3), 379–392 (1997).
[Crossref]

Honkanen, S.

Hu, T.

Iazikov, D.

Ishizaka, Y.

Izutsu, M.

Jiang, G. M.

Jiang, X. Q.

Joblin, A.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Kawaguchi, Y.

Koshiba, M.

Laarhuis, J. H.

J. Vandertol and J. H. Laarhuis, “A polarization splitter on LINBO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
[Crossref]

Love, J. D.

J. D. Love and N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
[Crossref]

N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
[Crossref] [PubMed]

J. D. Love and A. Ankiewicz, “Purely geometrical coarse wave-length multiplexer/demultiplexer,” Electron. Lett. 39(19), 1385–1386 (2003).
[Crossref]

W. M. Henry and J. D. Love, “Asymmetric multimode Y-junction splitters,” Opt. Quantum Electron. 29(3), 379–392 (1997).
[Crossref]

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Lu, M.

Milton, F.

W. K. Burns and F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

Morrell, M.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Mossberg, T. W.

Nakai, Y.

Osgood, R. M.

Peyghambarian, N.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Provenzano, D.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Qiu, H. Y.

Riesen, N.

Saitoh, K.

Shao, H. F.

Souhan, B.

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

Sueta, T.

Uematsu, T.

Vance, R. W. C.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Vandertol, J.

J. Vandertol and J. H. Laarhuis, “A polarization splitter on LINBO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
[Crossref]

West, B. R.

Yang, J. Y.

Yariv, A.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Yip, G. L.

N. Goto and G. L. Yip, “A TE-TM mode splitter in LINBO3 by proton-exchange and TI diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
[Crossref]

Yu, H.

Yu, P.

Appl. Opt. (4)

Electron. Lett. (2)

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

J. D. Love and A. Ankiewicz, “Purely geometrical coarse wave-length multiplexer/demultiplexer,” Electron. Lett. 39(19), 1385–1386 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

W. K. Burns and F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (2)

W. M. Henry and J. D. Love, “Asymmetric multimode Y-junction splitters,” Opt. Quantum Electron. 29(3), 379–392 (1997).
[Crossref]

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Science (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

Other (1)

D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” Asia Communications and Photonics Conference (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The schematic configuration of a CAYJs mode (de)multiplexer (b) Evolution of the fundamental mode between the first-stage stem C and arm A (c) Evolution of the first mode between the first-stage stem C and arm B (d) Evolution of the fundamental and first modes between the second-stage stem E and the first-stage stem C (e) Evolution of the second mode between the second-stage stem E and arm D (f) Evolution of the fundamental, first and second modes between the third-stage stem G and the second-stage stem E (g) Evolution of the third mode between the third-stage stem G and arm F.

Fig. 2
Fig. 2

(a) Schematic of the proposed 1 × 4 CAYJs mode-multiplexer (b) The calculated effective indices of the guided-modes in a SiO2 waveguide with a height of 7 μm. The dashed and solid curves are for TE and TM modes respectively.

Fig. 3
Fig. 3

Optical transmission of the first-stage asymmetric Y-junction, for the cases of inputting the fundamental mode into ports Input1 and Input2, when (a) L0 = 5000 μm, W1 changes (b) W1 = 13 μm, L0 changes. The dashed and solid curves are for the cases of putting the fundamental mode into ports Input1 and Input2, respectively.

Fig. 4
Fig. 4

Optical transmission of the second-stage asymmetric Y-junction, for the cases of inputting fundamental mode into ports Input1, Input2, and Input3, when (a) W1 = 13 μm, L1 = 5000μm, W2 changes (b) W1 = 13 μm, W2 = 22 μm, L1 changes. The solid, dash and dot curves represent the cases of putting the fundamental mode into ports Input1, Input2 and Input3 respectively.

Fig. 5
Fig. 5

Optical transmission of the third-stage asymmetric Y-junction, for the cases of inputting fundamental mode into ports Input1, Input2, Input3, and Input4, when (a) W1 = 13 μm, W2 = 22 μm, L1 = 5000 μm, L2 = 5000 μm, and W3 changes (b) W1 = 13 μm, W2 = 22 μm, L1 = 5000 μm, L2 = 10000 μm, and W3 changes. The solid, dash, dot and dash-dot curves represent the cases of putting the fundamental mode into ports Input1, Input2, Input3 and Input4, respectively.

Fig. 6
Fig. 6

BPM simulation of the designed 1 × 4 CAYJs mode-(de)multiplexer for putting the fundamental mode into the access waveguides at the wavelength of 1550 nm. (a) Input1 port (b) Input2 port (c) Input3 port (d) Input4 port (e) all input ports.

Fig. 7
Fig. 7

Wavelength dependence of the designed 1 × 4 CAYJs mode-(de)multiplexer, when the input port is (a) port Input1 (b) port Input2 (c) port Input3 and (d) port Input4. The rectangle, circle, diamond and triangle traces represent the transmission to ports Output1, Output2, Output3 and Output4, respectively.

Metrics